skip to main content

Search for: All records

Award ID contains: 1846855

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Stream dissolved oxygen (DO) dynamics are an outcome of metabolic activity and subsequently regulate ecosystem functions such as in‐stream solute and sediment reactions. The synchronization of DO signals in and across stream networks is both a cause and effect of the mode and timing of these functions, but there is limited empirical evidence for network patterns of DO synchrony. We used high frequency DO measurements at 42 sites spanning five catchments and stream orders to evaluate DO signal synchrony in response to variation in light (a driver of photosynthesis) and discharge (a control on DO signal spatial extent). We hypothesized that stream network DO synchrony arises when regional controls dominate: when light inputs are synchronous and when longitudinal hydrologic connectivity is high. By complement, we predicted that DO signal synchrony decreases as light becomes more asynchronous and stream flows decline or become discontinuous. Our results supported this hypothesis: greater DO signal synchrony arose with increasing light synchrony and flow connectivity. A model including these two controls explained 70% of variation in DO synchrony. We conclude that DO synchrony patterns within‐ and across‐networks support the current paradigm of discharge and light control on stream metabolic activity. Finally, we propose that DO synchrony patterns are likely a useful prerequisite for scaling subdaily metabolism estimates to network and regional scales.

    more » « less
  2. Abstract

    In Arctic catchments, bacterioplankton are dispersed through soils and streams, both of which freeze and thaw/flow in phase, seasonally. To characterize this dispersal and its potential impact on biogeochemistry, we collected bacterioplankton and measured stream physicochemistry during snowmelt and after vegetation senescence across multiple stream orders in alpine, tundra, and tundra‐dominated‐by‐lakes catchments. In all catchments, differences in community composition were associated with seasonal thaw, then attachment status (i.e. free floating or sediment associated), and then stream order. Bacterioplankton taxonomic diversity and richness were elevated in sediment‐associated fractions and in higher‐order reaches during snowmelt. FamiliesChthonomonadaceae,Pyrinomonadaceae, andXiphinematobacteraceaewere abundantly different across seasons, whileFlavobacteriaceaeandMicroscillaceaewere abundantly different between free‐floating and sediment‐associated fractions. Physicochemical data suggested there was high iron (Fe+) production (alpine catchment); Fe+production and chloride (Cl) removal (tundra catchment); and phosphorus (SRP) removal and ammonium (NH4+) production (lake catchment). In tundra landscapes, these ‘hot spots’ of Fe+production and Clremoval accompanied shifts in species richness, while SRP promoted the antecedent community. Our findings suggest that freshet increases bacterial dispersal from headwater catchments to receiving catchments, where bacterioplankton‐mineral relations stabilized communities in free‐flowing reaches, but bacterioplankton‐nutrient relations stabilized those punctuated by lakes.

    more » « less
  3. Abstract

    As we reckon with the effect of COVID‐19 on the research enterprise in hydrologic science, it is important to acknowledge that disruptions will be persistent and that institutional‐level adjustments, while helpful, are not sufficient to mitigate all impacts on hydrologic scientists. Here, we describe the breadth of research contributions in the hydrologic sciences, consider how the pandemic has impacted this portfolio of contributions, document one impact that is already being realized in publication of research, and suggest guidance to the hydrologic science community, institutions, review panels, and funding organizations in considering these impacts at various stages of hiring and promotion in our community. Acknowledging the diversity of contributions to research is particularly valuable because it provides a more objective, transparent, and holistic basis for evaluating individuals within the context of norms of the hydrologic science community. With clearly established values, it is easier to identify impacts of life events, such as those related to the COVID‐19 pandemic, as they are manifested in individuals under a diversity of circumstances.

    more » « less
  4. Abstract

    Climate change is intensifying the Arctic hydrologic cycle, potentially accelerating the release of carbon and nutrients from permafrost landscapes to rivers. However, there are limited riverine flow and solute data of adequate frequency and duration to test how seasonality and catchment landscape characteristics influence production and transport of carbon and nutrients in Arctic river networks. We measured high frequency hydrochemical dynamics at the outlets of three headwater catchments in Arctic Alaska over 3 years. The catchments represent common Arctic landscapes: low‐gradient tundra, low‐gradient and lake‐influenced tundra, and high‐gradient alpine tundra. Using in‐situ spectrophotometers, we measured dissolved organic carbon (DOC) and nitrate (NO3) concentrations at 15‐min intervals through the flow seasons of 2017, 2018, and 2019. These high‐frequency data allowed us to quantify concentration–discharge (C‐Q) responses during individual storm events across the flow season. Differences in C‐Q responses among catchments indicated strong landscape and seasonal controls on lateral DOC and NO3flux. For the two low‐gradient tundra catchments, we observed consistent DOC enrichment (transport‐limitation) and NO3dilution (source‐limitation) during flow events. Conversely, we found consistent NO3enrichment and DOC dilution in the high‐gradient alpine catchment. Our analysis revealed how high flow events may contribute disproportionately to downstream export in these Arctic streams. Because the duration of the flow season is expected to lengthen and the intensity of Arctic storms are expected to increase, understanding how discharge and solute concentration are coupled is crucial to understanding carbon and nutrient dynamics in rapidly changing permafrost ecosystems.

    more » « less
  5. Abstract

    Riverine fluxes of carbon and inorganic nutrients are increasing in virtually all large permafrost-affected rivers, indicating major shifts in Arctic landscapes. However, it is currently difficult to identify what is causing these changes in nutrient processing and flux because most long-term records of Arctic river chemistry are from small, headwater catchments draining <200 km2or from large rivers draining >100,000 km2. The interactions of nutrient sources and sinks across these scales are what ultimately control solute flux to the Arctic Ocean. In this context, we performed spatially-distributed sampling of 120 subcatchments nested within three Arctic watersheds spanning alpine, tundra, and glacial-lake landscapes in Alaska. We found that the dominant spatial scales controlling organic carbon and major nutrient concentrations was 3–30 km2, indicating a continuum of diffuse and discrete sourcing and processing dynamics. These patterns were consistent seasonally, suggesting that relatively fine-scale landscape patches drive solute generation in this region of the Arctic. These network-scale empirical frameworks could guide and benchmark future Earth system models seeking to represent lateral and longitudinal solute transport in rapidly changing Arctic landscapes.

    more » « less
  6. Abstract

    Climate change is creating widespread ecosystem disturbance across the permafrost zone, including a rapid increase in the extent and severity of tundra wildfire. The expansion of this previously rare disturbance has unknown consequences for lateral nutrient flux from terrestrial to aquatic environments. Lateral loss of nutrients could reduce carbon uptake and slow recovery of already nutrient‐limited tundra ecosystems. To investigate the effects of tundra wildfire on lateral nutrient export, we analyzed water chemistry in and around the 10‐year‐old  Anaktuvuk River fire scar in northern Alaska. We collected water samples from 21 burned and 21 unburned watersheds during snowmelt, at peak growing season, and after plant senescence in 2017 and 2018. After a decade of ecosystem recovery, aboveground biomass had recovered in burned watersheds, but overall carbon and nitrogen remained ~20% lower, and the active layer remained ~10% deeper. Despite lower organic matter stocks, dissolved organic nutrients were substantially elevated in burned watersheds, with higher flow‐weighted concentrations of organic carbon (25% higher), organic nitrogen (59% higher), organic phosphorus (65% higher), and organic sulfur (47% higher). Geochemical proxies indicated greater interaction with mineral soils in watersheds with surface subsidence, but optical analysis and isotopes suggested that recent plant growth, not mineral soil, was the main source of organic nutrients in burned watersheds. Burned and unburned watersheds had similar δ15N‐NO3, indicating that exported nitrogen was of preburn origin (i.e., not recently fixed). Lateral nitrogen flux from burned watersheds was 2‐ to 10‐fold higher than rates of background nitrogen fixation and atmospheric deposition estimated in this area. These findings indicate that wildfire in Arctic tundra can destabilize nitrogen, phosphorus, and sulfur previously stored in permafrost via plant uptake and leaching. This plant‐mediated nutrient loss could exacerbate terrestrial nutrient limitation after disturbance or serve as an important nutrient release mechanism during succession.

    more » « less
  7. Abstract

    Permafrost degradation is delivering bioavailable dissolved organic matter (DOM) and inorganic nutrients to surface water networks. While these permafrost subsidies represent a small portion of total fluvial DOM and nutrient fluxes, they could influence food webs and net ecosystem carbon balance via priming or nutrient effects that destabilize background DOM. We investigated how addition of biolabile carbon (acetate) and inorganic nutrients (nitrogen and phosphorus) affected DOM decomposition with 28‐day incubations. We incubated late‐summer stream water from 23 locations nested in seven northern or high‐altitude regions in Asia, Europe, and North America. DOM loss ranged from 3% to 52%, showing a variety of longitudinal patterns within stream networks. DOM optical properties varied widely, but DOM showed compositional similarity based on Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR MS) analysis. Addition of acetate and nutrients decreased bulk DOM mineralization (i.e., negative priming), with more negative effects on biodegradable DOM but neutral or positive effects on stable DOM. Unexpectedly, acetate and nutrients triggered breakdown of colored DOM (CDOM), with median decreases of 1.6% in the control and 22% in the amended treatment. Additionally, the uptake of added acetate was strongly limited by nutrient availability across sites. These findings suggest that biolabile DOM and nutrients released from degrading permafrost may decrease background DOM mineralization but alter stoichiometry and light conditions in receiving waterbodies. We conclude that priming and nutrient effects are coupled in northern aquatic ecosystems and that quantifying two‐way interactions between DOM properties and environmental conditions could resolve conflicting observations about the drivers of DOM in permafrost zone waterways.

    more » « less
  8. Climate change is an existential threat to the vast global permafrost domain. The diverse human cultures, ecological communities, and biogeochemical cycles of this tenth of the planet depend on the persistence of frozen conditions. The complexity, immensity, and remoteness of permafrost ecosystems make it difficult to grasp how quickly things are changing and what can be done about it. Here, we summarize terrestrial and marine changes in the permafrost domain with an eye toward global policy. While many questions remain, we know that continued fossil fuel burning is incompatible with the continued existence of the permafrost domain as we know it. If we fail to protect permafrost ecosystems, the consequences for human rights, biosphere integrity, and global climate will be severe. The policy implications are clear: the faster we reduce human emissions and draw down atmospheric CO 2 , the more of the permafrost domain we can save. Emissions reduction targets must be strengthened and accompanied by support for local peoples to protect intact ecological communities and natural carbon sinks within the permafrost domain. Some proposed geoengineering interventions such as solar shading, surface albedo modification, and vegetation manipulations are unproven and may exacerbate environmental injustice without providing lasting protection. Conversely, astounding advances in renewable energy have reopened viable pathways to halve human greenhouse gas emissions by 2030 and effectively stop them well before 2050. We call on leaders, corporations, researchers, and citizens everywhere to acknowledge the global importance of the permafrost domain and work towards climate restoration and empowerment of Indigenous and immigrant communities in these regions. 
    more » « less