skip to main content


Title: Restoration and resilience to sea level rise of a salt marsh affected by dieback events
Abstract

The frequency of salt marsh dieback events has increased over the last 25 years with unknown consequences to the resilience of the ecosystem to accelerated sea level rise (SLR). Salt marsh ecosystems impacted by sudden vegetation dieback events were previously thought to recover naturally within a few months to years. In this study, we used a 13‐year collection of remotely sensed imagery to provide evidence that approximately 14% of total marsh area has not revegetated 10 years after a dieback event in Charleston, SC. Dieback onset coincided with a severe drought in 2012, as indicated by the Palmer drought stress index. A second dieback event occurred in 2016 after a historic flood influenced by Hurricane Joaquin in 2015. Unvegetated zones reached nearly 30% of the total marsh area in 2017. We used a light detection and ranging‐derived digital elevation model to determine that most affected areas were associated with lower elevation zones in the interior of the marsh. Further, restoration by grass planting was effective, with pilot‐scale restored plots having greater aboveground biomass than reference sites after two years of transplanting. A positive outcome indicated that the stressors that caused the dieback are no longer present. Despite that, many affected areas have not recovered naturally, even though they are located within the typical elevation range of healthy marshes. A mechanistic modeling approach was used to assess the effects of vegetation dieback on salt marsh resilience to SLR. Predictions indicate that a highly productive restored marsh (2000 g m−2 year−1) would persist at a moderate SLR rate of 60 cm in 100 years, whereas a nonrestored mudflat would lose all its elevation capital after 100 years. Thus, rapid restoration of marsh dieback is critical to avoid further degradation. Also, failure to incorporate the increasing frequency and intensity of extreme climatic events that trigger irreversible marsh diebacks underestimates salt marsh vulnerability to climate change. Finally, at an elevated SLR rate of 122 cm in 100 years, which is most likely an extreme climate change scenario, even highly productive ecosystems augmented by sediment placement would not keep pace with SLR. Thus, climate change mitigation actions are also urgently needed to preserve present‐day marsh ecosystems.

 
more » « less
Award ID(s):
1654853
NSF-PAR ID:
10409173
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecosphere
Volume:
14
Issue:
4
ISSN:
2150-8925
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Tidal marshes in the Chesapeake Bay are vulnerable to the accelerating rate of sea-level rise (SLR) and subsidence. Restored and created marshes face the same risks as natural marshes, and their resilience to SLR may depend upon appropriate design and implementation. Here, the Coastal Wetland Equilibrium Model (CWEM) was used to assess the resilience of tidal marshes at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island (PI) in mid-Chesapeake Bay, MD, where dredged material from navigation channels is being used to create new tidal marshes planted withSpartina alterniflorain the low marsh andS. patensin the high marsh. The site is microtidal with low inorganic sediment inputs, where the rate of marsh elevation change is dominated by the production of organic matter and, therefore, is proportional to net ecosystem production (NEP). The model demonstrated the importance of marsh development for surface elevation gain. In created marshes, the buildout of belowground biomass adds volume and results in faster growth of marsh elevation, but the gains slow as the marsh matures. Elevation gain is the lessor of the recalcitrant fraction of NEP sequestered in sediment or the rate of increase in accommodation space. Marshes can keep up with and fill accommodation space with sequestered NEP up to a tipping point determined by the rate of SLR. The PI low marsh platform was forecasted to drown in about 43 years after construction at the current rate of SLR. Marsh loss can be mitigated by periodic thin layer placement (TLP) of sediment. CWEM was used to simulate PI marsh responses to different TLP strategies and showed that there is an optimal design that will maximize carbon sequestration and resilience depending on the trajectory of mean sea level.

     
    more » « less
  2. Abstract

    Climate change is projected to increase the frequency of extreme drought events, which can have dramatic consequences for ecosystems. Extreme drought may interact with other stressors such as invasion by non‐native species, yet little research has explored these dynamics. Here, we examine the physical mechanisms and temporal scale underlying a dieback of an invasive non‐native plant,Lepidium latifolium,in tidal salt marshes of the San Francisco Bay, California, USA, during an extreme, multi‐year drought occurring from 2012 to 2015. Using generalized additive mixed models (GAMMs), we explored the relationship between eight years of estuarine salinity data and five years ofL. latifoliumdensity data from three marshes spanning a gradient of salinity across the San Francisco Bay. We found a significant time‐lagged (3 yr) effect of estuarine salinity onL. latifoliumdensity, with high salinities preceding reductions inL. latifoliumdensities and low salinities preceding increases. The most dramatic change in stem density, a 54% reduction in 2015, was preceded by a salinity increase of 43% from 2011 to 2012. We found theL. latifoliumdecline was driven by impacts on mature, rather than young, plants. Additionally, we tested the importance of local precipitation in drivingL. latifoliumdensities in a one‐season rain exclusion experiment. We found 100% exclusion of precipitation during one rainy season (January–mid‐May) did not have a significant impact on densities of mature stands ofL. latifolium. Our finding that estuarine salinity was a key driver ofL. latifoliuminvasion dynamics suggests sea level rise, like extreme drought, may hinderL. latifoliuminvasion, as it will also raise estuarine salinities. Further, our study highlights the importance of temporal lags in understanding climate change impacts on biological invasions, which has received very little study to date.

     
    more » « less
  3. Abstract Aim

    Ongoing and future anthropogenic climate change poses one of the greatest threats to biodiversity, affecting species distributions and ecological interactions. In the Amazon, climatic changes are expected to induce warming, disrupt precipitation patterns and of particular concern, to increase the intensity and frequency of droughts. Yet the response of ecosystems to intense warm, dry events is not well understood. In the Andes the mid‐Holocene dry event (MHDE),c. 9,000 to 4,000 years ago, was the warmest and driest period of the last 100,000 years which coincided with changes in evaporation and precipitation that caused lake levels to drop over most of tropical South America. This event probably approximates our near‐climatic future, and a critical question is:How much did vegetation change in response to this forcing?

    Location

    Lake Pata, Brazilian Western Amazonia.

    Taxon

    Terrestrial and aquatic plants.

    Methods

    We used pollen, charcoal, total organic carbon (TOC), total nitrogen (TN), δ13C and δ15N data from a new high‐resolution core that spans the lastc. 7,600 years history of Lake Pata.

    Results

    We found that in the wettest section of Amazonia changes associated with the MHDE were detected in the geochemistry analysis but that vegetation changed very little in response to drought during the Holocene. This is the first high‐resolution core without apparent hiatuses that spans most of the Holocene (last 7,600 cal yrbp) from Lake Pata, Brazil. Changes in the organic geochemistry of sediments indicated that between c. 6,500 and 3,600 cal yrbplake levels dropped. Vegetation, however, showed little change as near‐modern forests were seen throughout the record, evidencing the substantial resilience of this system. Only a few species replacements and minor fluctuations in abundance were observed in the pollen record.

    Main conclusions

    The mid‐Holocene warming and reduced precipitation had a limited impact on western Amazonian forests. We attribute much of the resilience to a lack of fire in this system, and that if human‐set fires were to be introduced, the forest destruction from that cause would override that induced by climate alone.

     
    more » « less
  4. Abstract

    Changing precipitation patterns are predicted to alter ecosystem structure and function with potential carbon cycle feedbacks to climate change. Influenced by both land and sea, salt marshes are unique ecosystems and their productivity and respiration responses to precipitation change differ from those observed in terrestrial ecosystems. How salt marsh greenhouse gas fluxes and sediment microbial communities will respond to climate‐induced precipitation changes is largely unknown. We conducted 1‐year precipitation manipulation experiments in theSpartina patens(high marsh) zone of two salt marshes and quantified ecosystem functions at both and microbial community structure at one. Precipitation treatments (doubled rainfall, extreme drought, and seasonal intensification) had a significant, although transient, impact on porewater salinity following storms at both sites, but most site conditions (nutrient concentrations, sediment moisture, and temperature) were unaffected. Extreme drought led to a subtle change in microbial community structure, but most ecosystem functions (primary productivity, litter decomposition, and greenhouse gas fluxes) were not affected by precipitation changes. The absence of ecosystem function change indicates functional redundancy (under extreme drought) and resistance (under doubled precipitation and seasonal intensification) exist in the microbial community. Our findings demonstrate that salt marsh ecosystems can maintain function (including ecosystem services like carbon sequestration) under even the most extreme precipitation change scenarios, due to resistance, resilience, and functional redundancy in the underlying microbial community.

     
    more » « less
  5. null (Ed.)
    Abstract. Despite clear signals of regional impacts of the recent severe drought inCalifornia, e.g., within Californian Central Valley groundwater storage and Sierra Nevada forests, our understanding of how this drought affected soil moisture and vegetation responses in lowland grasslands is limited. In order to better understand the resulting vulnerability of these landscapes to fire and ecosystem degradation, we aimed to generalize drought-induced changes in subsurface soil moisture and to explore its effects within grassland ecosystems of Southern California. We used a high-resolution in situ dataset of climate and soil moisture from two grassland sites (coastal and inland), alongside greenness (Normalized Difference Vegetation Index) data from Landsat imagery, to explore drought dynamics in environments with similar precipitation but contrasting evaporative demand over the period 2008–2019. We show that negative impacts of prolonged precipitation deficits on vegetation at the coastal site were buffered by fog and moderate temperatures. During the drought, the Santa Barbara region experienced an early onset of the dry season in mid-March instead of April, resulting in premature senescence of grasses by mid-April. We developed a parsimonious soil moisture balance model that captures dynamic vegetation–evapotranspiration feedbacks and analyzed the links between climate, soil moisture, and vegetation greenness over several years of simulated drought conditions, exploring the impacts of plausible climate change scenarios that reflect changes to precipitation amounts, their seasonal distribution, and evaporative demand. The redistribution of precipitation over a shortened rainy season highlighted a strong coupling of evapotranspiration to incoming precipitation at the coastal site, while the lower water-holding capacity of soils at the inland site resulted in additional drainage occurring under this scenario. The loss of spring rains due to a shortening of the rainy season also revealed a greater impact on the inland site, suggesting less resilience to low moisture at a time when plant development is about to start. The results also suggest that the coastal site would suffer disproportionally from extended dry periods, effectively driving these areas into more extreme drought than previously seen. These sensitivities suggest potential future increases in the risk of wildfires under climate change, as well as increased grassland ecosystem vulnerability. 
    more » « less