Abstract The frequency of salt marsh dieback events has increased over the last 25 years with unknown consequences to the resilience of the ecosystem to accelerated sea level rise (SLR). Salt marsh ecosystems impacted by sudden vegetation dieback events were previously thought to recover naturally within a few months to years. In this study, we used a 13‐year collection of remotely sensed imagery to provide evidence that approximately 14% of total marsh area has not revegetated 10 years after a dieback event in Charleston, SC. Dieback onset coincided with a severe drought in 2012, as indicated by the Palmer drought stress index. A second dieback event occurred in 2016 after a historic flood influenced by Hurricane Joaquin in 2015. Unvegetated zones reached nearly 30% of the total marsh area in 2017. We used a light detection and ranging‐derived digital elevation model to determine that most affected areas were associated with lower elevation zones in the interior of the marsh. Further, restoration by grass planting was effective, with pilot‐scale restored plots having greater aboveground biomass than reference sites after two years of transplanting. A positive outcome indicated that the stressors that caused the dieback are no longer present. Despite that, many affected areas have not recovered naturally, even though they are located within the typical elevation range of healthy marshes. A mechanistic modeling approach was used to assess the effects of vegetation dieback on salt marsh resilience to SLR. Predictions indicate that a highly productive restored marsh (2000 g m−2 year−1) would persist at a moderate SLR rate of 60 cm in 100 years, whereas a nonrestored mudflat would lose all its elevation capital after 100 years. Thus, rapid restoration of marsh dieback is critical to avoid further degradation. Also, failure to incorporate the increasing frequency and intensity of extreme climatic events that trigger irreversible marsh diebacks underestimates salt marsh vulnerability to climate change. Finally, at an elevated SLR rate of 122 cm in 100 years, which is most likely an extreme climate change scenario, even highly productive ecosystems augmented by sediment placement would not keep pace with SLR. Thus, climate change mitigation actions are also urgently needed to preserve present‐day marsh ecosystems.
more »
« less
The effect of a small vegetation dieback event on salt marsh sediment transport
Abstract Vegetation is a critical component of the ecogeomorphic feedbacks that allow a salt marsh to build soil and accrete vertically. Vegetation dieback can therefore have detrimental effects on marsh stability, especially under conditions of rising sea levels. Here, we report a variety of sediment transport measurements associated with an unexpected, natural dieback in a rapidly prograding marsh in the Altamaha River Estuary, Georgia. We find that vegetation mortality led to a significant loss in elevation at the dieback site as evidenced by measurements of vertical accretion, erosion, and surface topography compared to vegetated reference areas. Below‐ground vegetation mortality led to reduced soil shear strength. The dieback site displayed an erosional, concave‐up topographic profile, in contrast to the reference sites. At the location directly impacted by the dieback, there was a reduction in flood dominance of suspended sediment concentration. Our work illustrates how a vegetation disturbance can at least temporarily reverse the local trajectory of a prograding marsh and produce complex patterns of sediment transport. © 2018 John Wiley & Sons, Ltd.
more »
« less
- PAR ID:
- 10461621
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Earth Surface Processes and Landforms
- Volume:
- 44
- Issue:
- 4
- ISSN:
- 0197-9337
- Page Range / eLocation ID:
- p. 944-952
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Runnels, a climate adaptation technique that drains surface water to restore marsh vegetation and habitat, are increasingly being used to prevent the formation of shallow water impoundments or pannes in salt marshes that result in the loss of important ecosystem services. However, we know little about the effect of runnels on salt marsh biogeochemistry. This study measured how sediment characteristics and rates of nitrogen cycle processes were altered by impounded water and vegetation loss, and whether runnels can restore these marsh attributes to reference conditions. Impounded areas were 52 ± 4% less vegetated than nearby intact marsh, with 11 ± 2% less organic matter and 24 ± 5% higher bulk density. Additionally, impoundments removed 32 ± 32 µmol N m−2d−1less than reference marsh areas via denitrification. At six of the 11 runneled sites, vegetation percent cover increased by 40 ± 5%, accompanied by a 7 ± 3% recovery of organic matter and a 9 ± 6% reduction of bulk density. At sites where vegetation recovered to within 70% of reference plots at a site, runneled plots removed 97 ± 31 µmol more N m−2d−1than impoundments, which was also 82 ± 31 µmol more N m−2d−1than reference areas. The driver of recovery is related to initial site conditions, including higher redox potentials and lower porewater salinities, compared with sites where revegetation was unsuccessful. The extent of runnel effectiveness and the recovery of vegetation, sediment characteristics, and nitrogen cycle processes was variable among runneled marshes, and the effectiveness of runnels may depend on initial site-specific characteristics and degree of initial degradation.more » « less
-
Abstract Marsh vegetation, a definitive component of delta ecosystems, has a strong effect on sediment retention and land-building, controlling both how much sediment can be delivered to and how much is retained by the marsh. An understanding of how vegetation influences these processes would improve the restoration and management of marshes. We use a random displacement model to simulate sediment transport, deposition, and resuspension within a marsh. As vegetation density increases, velocity declines, which reduces sediment supply to the marsh, but also reduces resuspension, which enhances sediment retention within the marsh. The competing trends of supply and retention produce a nonlinear relationship between sedimentation and vegetation density, such that an intermediate density yields the maximum sedimentation. Two patterns of sedimentation spatial distribution emerge in the simulation, and the exponential distribution only occurs when resuspension is absent. With resuspension, sediment is delivered farther into the marsh and in a uniform distribution. The model was validated with field observations of sedimentation response to seasonal variation in vegetation density observed in a marsh within the Mississippi River Delta.more » « less
-
Abstract Sea level rise (SLR) is threatening coastal marshes, leading to large‐scale marsh loss in several micro‐tidal systems. Early recognition of marsh vulnerability to SLR is critical in these systems to aid managers to take appropriate restoration or mitigation measures. However, it is not clear if current marsh vulnerability indicators correctly assess long‐term stability of the marsh system. In this study, two indicators of marsh stress were studied: (i) the skewness of the marsh elevation distribution, and (ii) the abundance of codominant species in mixtures. We combined high‐precision elevation measurements (GPS), LiDAR imagery, vegetation surveys and water level measurements to study these indicators in an organogenic micro‐tidal system (Blackwater River, Maryland, USA), where large‐scale historical conversion from marshes to shallow ponds resulted in a gradient of increasing marsh loss. The two indicators reveal increasingly stressed marshes along the marsh loss gradient, but suggest that the field site with the most marsh loss seems to experience less stress. For the latter site, previous research indicates that wind waves generated on interior marsh ponds contribute to lateral erosion of surrounding marsh edges and hence marsh loss. The eroded marsh sediment might temporarily provide the remaining marshes with the necessary sediment to keep up with relative SLR. However, this is only a short‐term alleviation, as lateral marsh edge erosion and sediment export lead to severe marsh loss in the long term. Our findings indicate that marsh elevation skewness and the abundance of codominant species in mixtures can be used to supplement existing marsh stress indicators, but that additional indices such as fetch length and the sediment budget should be included to account for lateral marsh erosion and sediment export and to correctly assess long‐term stability of micro‐tidal marshes. © 2020 John Wiley & Sons, Ltd.more » « less
-
Abstract Tidal marshes form at the confluence between estuarine and marine environments where tidal movement regulates their developmental processes. Here, we investigate how the interplay between tides, channel morphology, and vegetation affect sediment dynamics in a low energy tidal marsh at the Paul S. Sarbanes Ecosystem Restoration Project at Poplar Island. Poplar Island is an active restoration site where fine‐grained material dredged from navigation channels in the upper Chesapeake Bay are being used to restore remote tidal marsh habitat toward the middle bay (Maryland, USA). Tidal currents were measured over multiple tidal cycles in the inlets and tidal creeks of one marsh at Poplar Island, Cell 1B, using Acoustic Doppler Current Profilers (ADCP) to estimate water fluxes throughout the marsh complex. Sediment fluxes were estimated using acoustic backscatter recorded by ADCPs and validated against total suspended solid measurements taken on site. A high‐resolution geomorphic survey was conducted to capture channel cross sections and tidal marsh morphology. We integrated simple numerical models built in Delft3d with empirical observations to identify which eco‐geomorphological factors influence sediment distribution in various channel configurations with differing vegetative characteristics. Channel morphology influences flood‐ebb dominance in marshes, where deep, narrow channels promote high tidal velocities and incision, increasing sediment suspension and reducing resilience in marshes at Poplar Island. Our numerical models suggest that accurately modelling plant phenology is vital for estimating sediment accretion rates. In‐situ observations indicate that Poplar Island marshes are experiencing erosion typical for many Chesapeake Bay islands. Peak periods of sediment suspension frequently coincide with the largest outflows of water during ebb tides resulting in large sediment deficits. Ebb dominance (net sediment export) in tidal marshes is likely amplified by sea‐level rise and may lower marsh resilience. We couple field observations with numerical models to understand how tidal marsh morphodynamics contribute to marsh resilience. © 2019 John Wiley & Sons, Ltd.more » « less
An official website of the United States government
