skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Emerging Technologies and Approaches for In Situ, Autonomous Observing in the Arctic
Understanding and predicting Arctic change and its impacts on global climate requires broad, sustained observations of the atmosphere-ice-ocean system, yet technological and logistical challenges severely restrict the temporal and spatial scope of observing efforts. Satellite remote sensing provides unprecedented, pan-Arctic measurements of the surface, but complementary in situ observations are required to complete the picture. Over the past few decades, a diverse range of autonomous platforms have been developed to make broad, sustained observations of the ice-free ocean, often with near-real-time data delivery. Though these technologies are well suited to the difficult environmental conditions and remote logistics that complicate Arctic observing, they face a suite of additional challenges, such as limited access to satellite services that make geolocation and communication possible. This paper reviews new platform and sensor developments, adaptations of mature technologies, and approaches for their use, placed within the framework of Arctic Ocean observing needs.  more » « less
Award ID(s):
1951294 1902595 1723400 1842306
PAR ID:
10409306
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Oceanography
ISSN:
1042-8275
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice. 
    more » « less
  2. Our understanding of Arctic sea ice and its wide-ranging influence is deeply rooted in observation. Advancing technologies have profoundly improved our ability to observe Arctic sea ice, document its processes and properties, and describe atmosphere-ice-ocean interactions with unprecedented detail. Yet, our progress toward better understanding the Arctic sea ice system is mired by the stark disparities between observations that tend to be siloed by method, scientific discipline, and application. This article presents a review and philosophical design for observing sea ice and accelerating our understanding of the Arctic sea ice system. We give a brief history of Arctic sea ice observations and showcase the 2018 melt season within the context of five observational themes: spatial heterogeneity, temporal variability, cross-disciplinary science, scalability, and retrieval uncertainty. We synthesize buoy data, optical imagery, satellite retrievals, and airborne measurements to demonstrate how disparate data sets can be woven together to transcend issues of observational scale. The results show that there are limitations to interpreting any single data set alone. However, many of these limitations can be surmounted by combining observations that cross spatial and temporal scales. We conclude the article with pathways toward enhanced coordination across observational platforms in order to: (1) optimize the scientific, operational, and community return on observational investments, and (2) facilitate a richer understanding of Arctic sea ice and its role in the climate system. 
    more » « less
  3. Abstract The lack of continuous spatial and temporal sampling of hydrographic measurements in large parts of the Arctic Ocean remains a major obstacle for quantifying mean state and variability of the Arctic Ocean circulation. This shortcoming motivates an assessment of the utility of Argo-type floats, the challenges of deploying such floats due to the presence of sea ice, and the implications of extended times of no surfacing on hydrographic inferences. Within the framework of an Arctic coupled ocean–sea ice state estimate that is constrained to available satellite and in situ observations, we establish metrics for quantifying the usefulness of such floats. The likelihood of float surfacing strongly correlates with the annual sea ice minimum cover. Within the float lifetime of 4–5 years, surfacing frequency ranges from 10–100 days in seasonally sea ice–covered regions to 1–3 years in multiyear sea ice–covered regions. The longer the float drifts under ice without surfacing, the larger the uncertainty in its position, which translates into larger uncertainties in hydrographic measurements. Below the mixed layer, especially in the western Arctic, normalized errors remain below 1, suggesting that measurements along a path whose only known positions are the beginning and end points can help constrain numerical models and reduce hydrographic uncertainties. The error assessment presented is a first step in the development of quantitative methods for guiding the design of observing networks. These results can and should be used to inform a float network design with suggested locations of float deployment and associated expected hydrographic uncertainties. 
    more » « less
  4. Abstract Under-ice eddies are prevalent in the major circulation system in the western Arctic Ocean, the Beaufort Gyre. Theoretical studies hypothesize that the eddy-driven overturning and the ice-ocean drag are crucial mechanisms of the gyre equilibration in response to atmospheric winds. However, due to severe weather conditions and limitations of remote sensing instruments, there are only sparse eddy observations in the ice-covered Arctic Ocean. Hence, the evolution of the under-ice eddy field, its impact on the gyre variability, and their mutual response to the ongoing Arctic warming remain uncertain. Here, we infer the characteristics of the under-ice eddy field by establishing its tight connection to the angular velocities of isolated spinning sea ice floes in marginal ice zones. Using over two decades of satellite observations of marginal ice zones in the western Arctic Ocean, we identified and tracked thousands of floes and used idealized eddy modeling to infer the interannual evolution of the eddy energetics underneath the ice. We find that the eddy field is strongly correlated to the strength of the Beaufort Gyre on interannual timescales, which provides the major observational evidence consistent with the hypothesis of the gyre equilibration by eddies. The inferred trends over the past two decades signify that the gyre and its eddy field have been intensifying as the sea ice cover has been declining. Our results imply that with continuing sea ice decline, the eddy field and the Beaufort Gyre will keep intensifying and leading to enhanced transport of freshwater and biogeochemical tracers. 
    more » « less
  5. Dense, cold waters formed on Antarctic continental shelves descend along the Antarctic continental margin, where they mix with other Southern Ocean waters to form Antarctic Bottom Water (AABW). AABW then spreads into the deepest parts of all major ocean basins, isolating heat and carbon from the atmosphere for centuries. Despite AABW’s key role in regulating Earth’s climate on long time scales and in recording Southern Ocean conditions, AABW remains poorly observed. This lack of observational data is mostly due to two factors. First, AABW originates on the Antarctic continental shelf and slope wherein situmeasurements are limited and ocean observations by satellites are hampered by persistent sea ice cover and long periods of darkness in winter. Second, north of the Antarctic continental slope, AABW is found below approximately 2 km depth, wherein situobservations are also scarce and satellites cannot provide direct measurements. Here, we review progress made during the past decades in observing AABW. We describe 1) long-term monitoring obtained by moorings, by ship-based surveys, and beneath ice shelves through bore holes; 2) the recent development of autonomous observing tools in coastal Antarctic and deep ocean systems; and 3) alternative approaches including data assimilation models and satellite-derived proxies. The variety of approaches is beginning to transform our understanding of AABW, including its formation processes, temporal variability, and contribution to the lower limb of the global ocean meridional overturning circulation. In particular, these observations highlight the key role played by winds, sea ice, and the Antarctic Ice Sheet in AABW-related processes. We conclude by discussing future avenues for observing and understanding AABW, impressing the need for a sustained and coordinated observing system. 
    more » « less