Abstract Prominent scarps on Pinedale glacial surfaces along the eastern base of the Teton Range confirm latest Pleistocene to Holocene surface‐faulting earthquakes on the Teton fault, but the timing of these events is only broadly constrained by a single previous paleoseismic study. We excavated two trenches at the Leigh Lake site near the center of the Teton fault to address open questions about earthquake timing and rupture length. Structural and stratigraphic evidence indicates two surface‐faulting earthquakes at the site that postdate deglacial sediments dated by radiocarbon and optically stimulated luminescence to ∼10–11 ka. Earthquake LL2 occurred at ∼10.0 ka (9.7–10.4 ka; 95% confidence range) and LL1 at ∼5.9 ka (4.8–7.1 ka; 95%). LL2 predates an earthquake at ∼8 ka identified in the previous paleoseismic investigation at Granite Canyon. LL1 corresponds to the most recent Granite Canyon earthquake at ∼4.7–7.9 ka (95% confidence range). Our results are consistent with the previously documented long‐elapsed time since the most recent Teton fault rupture and expand the fault’s earthquake history into the early Holocene.
more »
« less
Influences of tectonic and geomorphic processes on fault scarp height along the Teton fault, Wyoming, USA
Landscape disturbance events (e.g., earthquakes, slope failures) play key roles in landscape evolution in tectonically active areas. Along the Teton fault, fault scarps vary in height by up to tens of meters. LiDAR-based mapping indicates that scarp height is affected by glacial geomorphology, slope failure, and alluvial processes. LiDAR data, digital and field mapping were used to characterize fault scarps and slope failure deposits along the Teton fault zone. Based on vertical separation (VS; the vertical offset between faulted surfaces) across fault scarps and the expected behavior of normal faults, we propose a four-section model of the Teton fault. At a broad scale, VS is greatest along the southern fault zone. At a finer scale, VS is least at the ends of the fault and at three areas within the central fault zone. Transitions between these four sections may represent segment boundaries with potentially important implications for geohazards assessment.
more »
« less
- Award ID(s):
- 1755079
- PAR ID:
- 10409425
- Date Published:
- Journal Name:
- Proceedings of the 8th Geohazards Conference
- Page Range / eLocation ID:
- 1-8
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)ABSTRACT The 72-km-long Teton fault in northwestern Wyoming is an ideal candidate for reconstructing the lateral extent of surface-rupturing earthquakes and testing models of normal-fault segmentation. To explore the history of earthquakes on the northern Teton fault, we hand-excavated two trenches at the Steamboat Mountain site, where the east-dipping Teton fault has vertically displaced west-sloping alluvial-fan surfaces. The trenches exposed glaciofluvial, alluvial-fan, and scarp-derived colluvial sediments and stratigraphic and structural evidence of two surface-rupturing earthquakes (SM1 and SM2). A Bayesian geochronologic model for the site includes three optically stimulated luminescence ages (∼12–17 ka) for the glaciofluvial units and 16 radiocarbon ages (∼1.2–8.6 ka) for the alluvial-fan and colluvial units and constrains SM1 and SM2 to 5.5±0.2 ka, 1σ (5.2–5.9 ka, 95%) and 9.7±0.9 ka, 1σ (8.5–11.5 ka, 95%), respectively. Structural, stratigraphic, and geomorphic relations yield vertical displacements for SM1 (2.0±0.6 m, 1σ) and SM2 (2.0±1.0 m, 1σ). The Steamboat Mountain paleoseismic chronology overlaps temporally with earthquakes interpreted from previous terrestrial and lacustrine paleoseismic data along the fault. Integrating these data, we infer that the youngest Teton fault rupture occurred at ∼5.3 ka, generated 1.7±1.0 m, 1σ of vertical displacement along 51–70 km of the fault, and had a moment magnitude (Mw) of ∼7.0–7.2. This rupture was apparently unimpeded by structural complexities along the Teton fault. The integrated chronology permits a previous full-length rupture at ∼10 ka and possible partial ruptures of the fault at ∼8–9 ka. To reconcile conflicting terrestrial and lacustrine paleoseismic data, we propose a hypothesis of alternating full- and partial-length ruptures of the Teton fault, including Mw∼6.5–7.2 earthquakes every ∼1.2 ky. Additional paleoseismic data for the northern and central sections of the fault would serve to test this bimodal rupture hypothesis.more » « less
-
The study of active fault zones is fundamental to understanding both long‐term tectonics and short‐term earthquake behavior. Here, we integrate lidar‐enabled geomorphic‐geologic mapping and petrochronological analysis to reveal the slip‐history, tectonic evolution, and structure of the southern Alpine Fault in New Zealand. New petrographic, zircon U‐Pb and zircon trace‐element data from fault‐displaced basement units provides constraint on ∼70–90 km of right‐lateral displacement on the presently active strand of the southern Alpine Fault, which we infer is of Plio‐Quaternary age. This incremental displacement has accumulated while the offshore part of the fault has evolved within a distributed zone of plate boundary deformation. We hypothesize that pre‐existing faults in the continental crust of the Pacific Plate have been exploited as components of this distributed plate boundary system. Along the onshore southern Alpine Fault, detailed mapping of active fault traces reveals complexity in geomorphic fault expression. Our analysis suggests that the major geomorphic features of the southern Alpine Fault correspond to penetrative fault zone structures. We emphasize the region immediately south of the central‐southern section boundary, where a major extensional stepover and restraining bend are located along‐strike of each other. We infer that this geometry may reflect segmentation of the Alpine Fault between two distinct fault segments. The ends of these proposed segments meet near where several Holocene earthquake ruptures have terminated. Our new constraints on the evolution and structure of the southern Alpine Fault help contribute to improved characterization of the greatest onshore source of earthquake hazard in New Zealand.more » « less
-
The authors use mesoscale structures and existing 1:24,000 scale geologic maps to infer the locations of four macroscale NNW-striking blind normal faults on the northwest flank of the Nashville dome ~30 km south of downtown Nashville. The Harpeth River fault zone has an across-strike width of ~6 km, and, from west to east, includes the Peytonsville, Arno, McClory Creek, and McDaniel fault zones. All of the fault zones are east-side-down except for the west-side-down Peytonsville fault zone. Mesoscale structures are exposed within each fault zone and are observed at three stops along Tennessee State Route (S.R.)-840 and at an additional stop 1.8 km south of the highway. These structures include minor normal faults (maximum dip separation 3.8 m), non-vertical joints, and mesoscale folds. No faults are depicted on existing geologic maps of the zone, but these maps reveal macroscale folding of the contact between the Ordovician Carters Formation and the overlying Hermitage Formation. The authors use the orientation and amplitude of these folds to constrain the orientation and length of the inferred blind fault zones and the amount of structural relief across the zones. The longest fault zones are the Arno (13.2 km long) and McDaniel (11.6 km) fault zones, and the amount of structural relief across these zones peaks at 27 m and 24 m, respectively. The authors also use existing geologic maps to hypothesize that a second east-side-down blind normal fault zone (Stones River fault zone) is located ~27 km northeast of the Harpeth River fault zone. The authors interpret non-vertical joints at one stop as fault-related, and they interpret joints at a second stop as related to a hanging wall syncline. Both of these stops are within 4 km of S.R.-840.more » « less
-
Oblique convergence along strike-slip faults can lead to both distributed and localized deformation. How focused transpressive deformation is both localized and maintained along sub-vertical wrench structures to create high topography and deep exhumation warrants further investigation. The high peak region of the Hayes Range, central Alaska, USA, is bound by two lithospheric scale vertical faults: the Denali fault to the south and Hines Creek fault to the north. The high topography area has peaks over 4000 m and locally has experienced more than 14 km of Neogene exhumation, yet the mountain range is located on the convex side of the Denali fault Mount Hayes restraining bend, where slip partitioning alone cannot account for this zone of extreme exhumation. Through the application of U-Pb zircon, 40Ar/39Ar (hornblende, muscovite, biotite, and K-feldspar), apatite fission-track, and (U-Th)/He geo-thermochronology, we test whether these two parallel, reactivated suture zone structures are working in tandem to vertically extrude the Between the Hines Creek and Denali faults block on the convex side of the Mount Hayes restraining bend. We document that since at least 45 Ma, the Denali fault has been bent and localized in a narrow fault zone (<160 m) with a significant dip-slip component, the Mount Hayes restraining bend has been fixed to the north side of the Denali fault, and that the Between the Hines Creek and Denali faults block has been undergoing vertical extrusion as a relatively coherent block along the displacement “free faces” of two lithospheric scale suture zone faults. A bent Denali fault by ca. 45 Ma supports the long-standing Alaska orocline hypothesis that has Alaska bent by ca. 44 Ma. Southern Alaska is currently converging at ~4 mm/yr to the north against the Denali fault and driving vertical extrusion of the Between the Hines Creek and Denali faults block and deformation north of the Hines Creek fault. We apply insights ascertained from the Between the Hines Creek and Denali faults block to another region in southern Alaska, the Fairweather Range, where extreme topography and persistent exhumation is also located between two sub-parallel faults, and propose that this region has likely undergone vertical extrusion along the free faces of those faults.more » « less
An official website of the United States government

