skip to main content


This content will become publicly available on June 1, 2024

Title: Topology Design and Optimization of Modular Soft Robots Capable of Homogenous and Heterogenous Reconfiguration
Abstract The deformability of soft material robots provides them with the ability to transform between complex shapes and forms. This unique ability facilitates Modular Soft Robots (MSoRos) to assemble and reconfigure into different configurations, e.g., planar and spherical. These topologies display widely different locomotion modes that are desirable to navigate different environments, e.g., crawling or rolling for these cases. This research presents topology design and optimization methodology of MSoRos capable of both homogeneous and heterogeneous reconfiguration in spherical and planar configurations. Homogeneous reconfiguration refers to the scenario when all the modules are identical, while the heterogeneous contains nonidentical modules. The sequential design approach uses a polyhedron (Archimedean or Platonic) as the base solid to define module characteristics. As the design processes involve nonlinear projections, the base polyhedron also dictates the type of reconfiguration—heterogeneous (Archimedean) or homogeneous (Platonic). Thereafter, it applies the polyhedron vertex alignment principle to ensure geometric alignment of the modules during reconfiguration. Planar and spherical distortion metrics are defined to quantify distortions due to reconfiguration. Subsequently, the optimal topology is obtained by minimizing a cost function that is a weighted sum of the two distortion metrics. The result is a set of MSoRos capable of distinct 1D and 2D planar configurations (both heterogeneous and homogeneous) and multiple 3D spherical configurations of varying radii (both heterogeneous and homogeneous). The methodology is validated on a MSoRo system based on the combination of a cuboctahedron (Archimedean solid) and a cube and an octahedron (Platonic solids).  more » « less
Award ID(s):
1830432
NSF-PAR ID:
10409734
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Computational and Nonlinear Dynamics
Volume:
18
Issue:
6
ISSN:
1555-1415
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mechanical cloaks are materials engineered to manipulate the elastic response around objects to make them indistinguishable from their homogeneous surroundings. Typically, methods based on material-parameter transformations are used to design optical, thermal, and electric cloaks. However, they are not applicable in designing mechanical cloaks, since continuum-mechanics equations are not form invariant under general coordinate transformations. As a result, existing design methods for mechanical cloaks have so far been limited to a narrow selection of voids with simple shapes. To address this challenge, we present a systematic, data-driven design approach to create mechanical cloaks composed of aperiodic metamaterials using a large precomputed unit cell database. Our method is flexible to allow the design of cloaks with various boundary conditions, multiple loadings, different shapes and numbers of voids, and different homogeneous surroundings. It enables a concurrent optimization of both topology and properties distribution of the cloak. Compared to conventional fixed-shape solutions, this results in an overall better cloaking performance and offers unparalleled versatility. Experimental measurements on additively manufactured structures further confirm the validity of the proposed approach. Our research illustrates the benefits of data-driven approaches in quickly responding to new design scenarios and resolving the computational challenge associated with multiscale designs of functional structures. It could be generalized to accommodate other applications that require heterogeneous property distribution, such as soft robots and implants design. 
    more » « less
  2. Abstract

    An integrated design, modeling, and multi‐material 3D printing platform for fabricating liquid crystal elastomer (LCE) lattices in both homogeneous and heterogeneous layouts with spatially programmable nematic director order and local composition is reported. Depending on their compositional topology, these lattices exhibit different reversible shape‐morphing transformations upon cycling above and below their respective nematic‐to‐isotropic transition temperatures. Further, it is shown that there is good agreement between their experimentally observed deformation response and model predictions for all LCE lattice designs evaluated. Lastly, an inverse design model is established and the ability to print LCE lattices with the predicted deformation behavior is demonstrated. This work opens new avenues for creating architected LCE lattices that may find potential application in energy‐dissipating structures, microfluidic pumping, mechanical logic, and soft robotics.

     
    more » « less
  3. Legged locomotion is a highly promising but under–researched subfield within the field of soft robotics. The compliant limbs of soft-limbed robots offer numerous benefits, including the ability to regulate impacts, tolerate falls, and navigate through tight spaces. These robots have the potential to be used for various applications, such as search and rescue, inspection, surveillance, and more. The state-of-the-art still faces many challenges, including limited degrees of freedom, a lack of diversity in gait trajectories, insufficient limb dexterity, and limited payload capabilities. To address these challenges, we develop a modular soft-limbed robot that can mimic the locomotion of pinnipeds. By using a modular design approach, we aim to create a robot that has improved degrees of freedom, gait trajectory diversity, limb dexterity, and payload capabilities. We derive a complete floating-base kinematic model of the proposed robot and use it to generate and experimentally validate a variety of locomotion gaits. Results show that the proposed robot is capable of replicating these gaits effectively. We compare the locomotion trajectories under different gait parameters against our modeling results to demonstrate the validity of our proposed gait models. 
    more » « less
  4. Kirigami (cutting and/or folding) offers a promising strategy to reconfigure metamaterials. Conventionally, kirigami metamaterials are often composed of passive cut unit cells to be reconfigured under mechanical forces. The constituent stimuli-responsive materials in active kirigami metamaterials instead will enable potential mechanical properties and functionality, arising from the active control of cut unit cells. However, the planar features of hinges in conventional kirigami structures significantly constrain the degrees of freedom (DOFs) in both deformation and actuation of the cut units. To release both constraints, here, we demonstrate a universal design of implementing folds to reconstruct sole-cuts–based metamaterials. We show that the supplemented folds not only enrich the structural reconfiguration beyond sole cuts but also enable more DOFs in actuating the kirigami metasheets into 3 dimensions (3D) in response to environmental temperature. Utilizing the multi-DOF in deformation of unit cells, we demonstrate that planar metasheets with the same cut design can self-fold into programmable 3D kirigami metastructures with distinct mechanical properties. Last, we demonstrate potential applications of programmable kirigami machines and easy-turning soft robots.

     
    more » « less
  5. Abstract

    Snap‐through bistability is often observed in nature (e.g., fast snapping to closure of Venus flytrap) and the life (e.g., bottle caps and hair clippers). Recently, harnessing bistability and multistability in different structures and soft materials has attracted growing interest for high‐performance soft actuators and soft robots. They have demonstrated broad and unique applications in high‐speed locomotion on land and under water, adaptive sensing and fast grasping, shape reconfiguration, electronics‐free controls with a single input, and logic computation. Here, an overview of integrating bistable and multistable structures with soft actuating materials for diverse soft actuators and soft/flexible robots is given. The mechanics‐guided structural design principles for five categories of basic bistable elements from 1D to 3D (i.e., constrained beams, curved plates, dome shells, compliant mechanisms of linkages with flexible hinges and deformable origami, and balloon structures) are first presented, alongside brief discussions of typical soft actuating materials (i.e., fluidic elastomers and stimuli‐responsive materials such as electro‐, photo‐, thermo‐, magnetic‐, and hydro‐responsive polymers). Following that, integrating these soft materials with each category of bistable elements for soft bistable and multistable actuators and their diverse robotic applications are discussed. To conclude, perspectives on the challenges and opportunities in this emerging field are considered.

     
    more » « less