skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The United States Potato Genebank Holding of cv. Desiree is a Somatic Mutant of cv. Urgenta
Award ID(s):
1956429
PAR ID:
10409747
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
American Journal of Potato Research
Volume:
100
Issue:
1
ISSN:
1099-209X
Page Range / eLocation ID:
27 to 38
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The adblocking arms race has escalated over the last few years. An entire new ecosystem of circumvention (CV) services has recently emerged that aims to bypass adblockers by obfuscating site content, making it difficult for adblocking filter lists to distinguish between ads and functional content. In this paper, we investigate recent anti-circumvention efforts by the adblocking community that leverage custom filter lists. In particular, we analyze the anti-circumvention filter list (ACVL), which supports advanced filter rules with enriched syntax and capabilities designed specifically to counter circumvention. We show that keeping ACVL rules up-to-date requires expert list curators to continuously monitor sites known to employ CV services and to discover new such sites in the wild — both tasks require considerable manual effort. To help automate and scale ACVL curation, we develop CV-INSPECTOR, a machine learning approach for automatically detecting adblock circumvention using differential execution analysis. We show that CV-INSPECTOR achieves 93% accuracy in detecting sites that successfully circumvent adblockers. We deploy CV-INSPECTOR on top-20K sites to discover the sites that employ circumvention in the wild.We further apply CV-INSPECTOR to a list of sites that are known to utilize circumvention and are closely monitored by ACVL authors. We demonstrate that CV-INSPECTOR reduces the human labeling effort by 98%, which removes a major bottleneck for ACVL authors. Our work is the first large-scale study of the state of the adblock circumvention arms race, and makes an important step towards automating anti-CV efforts. 
    more » « less
  2. null (Ed.)
    With the vastly growing need for secure communication, quantum key distribution (QKD) has been developed to provide high security for communications against potential attacks from the fast-developing quantum computers. Among different QKD protocols, continuous variable (CV-) QKD employing Gaussian modulated coherent states has been promising for its complete security proof and its compatibility with current communication systems in implementation with homodyne or heterodyne detection. Since satellite communication has been more and more important in developing global communication networks, there have been concerns about the security in satellite communication and how we should evaluate the security of CV-QKD in such scenarios. To better analyse the secure key rate (SKR) in this case, in this invited paper we investigate the CV-QKD SKR lower bounds under realistic assumptions over a satellite-to-satellite channel. We also investigate the eavesdropper's best strategy to apply in these scenarios. We demonstrate that for these channel conditions with well-chosen carrier centre frequency and receiver aperture size, based on channel parameters, we can optimize SKR correspondingly. The proposed satellite-based QKD system provides high security level for the coming 5G and beyond networks, the Internet of things, self-driving cars, and other fast-developing applications. 
    more » « less
  3. To overcome the low-reconciliation-efficiency problem of Gaussian modulation (GM)-based-CV-QKD, we propose to use discretized-GM-based-CV-QKD. This scheme has complexity and reconciliation-efficiency similar to discrete modulation (DM)-based-CV-QKD and at the same time solves for the problem of nonexistence of strict security proofs for DM-CV-QKD under collective attacks. 
    more » « less