skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Engineering DNA Crystals toward Studying DNA–Guest Molecule Interactions
Award ID(s):
2107393 2025187 2106790
PAR ID:
10409781
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of the American Chemical Society
Volume:
145
Issue:
8
ISSN:
0002-7863
Page Range / eLocation ID:
4853 to 4859
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Deoxyribonucleic Acid (DNA) as a storage medium with high density and long-term preservation properties can satisfy the requirement of archival storage for rapidly increased digital volume. The read and write processes of DNA storage are error-prone. Images widely used in social media have the properties of fault tolerance which are well fitted to the DNA storage. However, prior work simply investigated the feasibility of DNA storage storing different types of data and simply store images in DNA storage, which did not fully investigate the fault-tolerant potential of images in the DNA storage. In this paper, we proposed a new image-based DNA system called IMG-DNA, which can efficiently store images in DNA storage with improved DNA storage robustness. First, a new DNA architecture is proposed to fit JPEG-based images and improve the image’s robustness in DNA storage. Moreover, barriers inserted in DNA sequences efficiently prevent error propagation in images of DNA storage. The experimental results indicate that the proposed IMG-DNA achieves much higher fault-tolerant than prior work. 
    more » « less
  2. Agrobacterium species transfer DNA (T-DNA) to plant cells where it may integrate into plant chromosomes. The process of integration is thought to involve invasion and ligation of T-DNA, or its copying, into nicks or breaks in the host genome. Integrated T-DNA often contains, at its junctions with plant DNA, deletions of T-DNA or plant DNA, filler DNA, and/or microhomology between T-DNA and plant DNA pre-integration sites. T-DNA integration is also often associated with major plant genome rearrangements, including inversions and translocations. These characteristics are similar to those often found after repair of DNA breaks, and thus DNA repair mechanisms have frequently been invoked to explain the mechanism of T-DNA integration. However, the involvement of specific plant DNA repair proteins and Agrobacterium proteins in integration remains controversial, with numerous contradictory results reported in the literature. In this review I discuss this literature and comment on many of these studies. I conclude that either multiple known DNA repair pathways can be used for integration, or that some yet unknown pathway must exist to facilitate T-DNA integration into the plant genome. 
    more » « less
  3. Abstract Structural, regulatory and enzymatic proteins interact with DNA to maintain a healthy and functional genome. Yet, our structural understanding of how proteins interact with DNA is limited. We present MELD-DNA, a novel computational approach to predict the structures of protein–DNA complexes. The method combines molecular dynamics simulations with general knowledge or experimental information through Bayesian inference. The physical model is sensitive to sequence-dependent properties and conformational changes required for binding, while information accelerates sampling of bound conformations. MELD-DNA can: (i) sample multiple binding modes; (ii) identify the preferred binding mode from the ensembles; and (iii) provide qualitative binding preferences between DNA sequences. We first assess performance on a dataset of 15 protein–DNA complexes and compare it with state-of-the-art methodologies. Furthermore, for three selected complexes, we show sequence dependence effects of binding in MELD predictions. We expect that the results presented herein, together with the freely available software, will impact structural biology (by complementing DNA structural databases) and molecular recognition (by bringing new insights into aspects governing protein–DNA interactions). 
    more » « less