This paper presents work on the heteroepitaxy of salts, specifically fluorides, on semiconductors and heteroepitaxy of semiconductors on salts. Fluorides layers are deposited on commercial Gallium Arsenide (GaAs) wafers followed by the heteroepitaxial growth of GaAs using metal‐organic chemical vapor deposition (MOCVD). The fluoride layers consist of 2 lattice‐engineered layers of alkaline‐earth compounds to match with GaAs, and are used to sandwich another alkaline‐earth compound with higher water‐solubility as a sacrificial layer. The triple fluoride layers enable liftoff of free‐standing semiconductor films which can be further transferred to desirable substrates. 2D‐X‐ray Diffraction (2D‐XRD) measurements confirm epitaxial growth of both the fluorides and the subsequently grown GaAs films. Single junction (SJ) solar cell devices based on thus prepared films show a power conversion efficiency (PCE) of 10.3% under 1 sun illumination. After the completion of device fabrications, the GaAs film is lifted off from the substrate by a novel water‐assisted epitaxial liftoff (H2O‐ELO) technique and transferred to a cheaper substrate. The original GaAs wafer is recycled and reused twice. Devices based on reused substrates show no significant degradation in performance. The semiconductor‐salt‐semiconductor scheme has great implications in high‐performance, flexible, and large‐area electronics.
GaAs is well known for its extremely high electron mobility and direct band gap. Owing to the technological advances in silicon-based technology, GaAs has been limited to niche areas. This paper discusses the application of GaAs in molecular electronics and spintronics as a potential field for considering this amazing but challenging material. GaAs is challenging because its surface is characterized by a high density of surface states, which precludes the utilization of this semiconducting material in mainstream devices. Sulfur(S)-based passivation has been found to be significantly useful for reducing the effect of dangling bonds and was researched thoroughly. GaAs applications in molecular spintronics and electronics can benefit significantly from prior knowledge of GaAs and S interactions because S is a popular functional group for bonding molecular device elements with different semiconductors and metals. In this article, the problem associated with the GaAs surface is discussed in a tutorial form. A wide variety of surface passivation methods has been briefly introduced. We attempted to highlight the significant differences in the S-GaAs interactions for different S passivation methods. We also elaborate on the mechanisms and atomic-scale understanding of the variation in surface chemistry and reconstruction due to various S passivation methods. It is envisioned that GaAs and thiol-terminated molecule-based novel devices can exhibit innovative device characteristics and bring the added advantage of S-based passivation.
more » « less- Award ID(s):
- 1914751
- NSF-PAR ID:
- 10409901
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Materials Research Express
- Volume:
- 10
- Issue:
- 4
- ISSN:
- 2053-1591
- Page Range / eLocation ID:
- Article No. 042003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
GaAs(111)B are commercially available substrates widely used for the growth of van der Waals chalcogenide films. Wafer-scale, high-quality crystalline films can be deposited on GaAs(111)B substrates using molecular beam epitaxy. However, two obstacles persist in the use of GaAs(111)B: first, the surface dangling bonds make it challenging for the growth of van der Waals materials; second, the As-terminated surface is prone to aging in air. This study investigated a thermal treatment method for deoxidizing GaAs(111)B substrates while simultaneously passivating the surface dangling bonds with Se. By optimizing the treatment parameters, we obtained a flat and completely deoxidized platform for subsequent film growth, with highly reproducible operations. Furthermore, through first-principle calculations, we find that the most energetically favorable surface of GaAs(111)B after Se passivation consists of 25% As atoms and 75% Se atoms. Finally, we discovered that the common storage method using food-grade vacuum packaging cannot completely prevent substrate aging, and even after thermal treatment, aging still affects subsequent growth. Therefore, we recommend using N2-purged containers for better preservation.
-
Arsenic’s high vapor pressure leads to thermal instability during hightemperature processing of GaAs, contributing to the performance degradation of subsequently fabricated devices. The resulting surface damage also obfuscates the exact quantitative characterization of the diffusion process, a critical step in device manufacturing. In this experiment, an encapsulant-and-sacrificial-layer procedure is employed to reduce arsenic sublimation and preserve a smooth surface. A capped GaAs/InGaAs/GaAs quantum well structure is subjected to rapid thermal annealing, and AFM, SEM, and EDS are used to compare the surface qualities of the postannealed encapsulated GaAs against the reference GaAs. For the encapsulated substrate, a smooth surface with an average root-mean-squared value of 6.5 Å is achieved after high-temperature processing. SIMS analysis is used to obtain the diffused indium atomic concentration profiles for a smooth and roughened GaAs surface and their corresponding diffusion parameters. The analysis demonstrates how precise diffusion parameter extraction requires preserving an atomically-smooth surface in semiconductor diffusion characterization.more » « less
-
Abstract While the discovery of two-dimensional (2D) magnets opens the door for fundamental physics and next-generation spintronics, it is technically challenging to achieve the room-temperature ferromagnetic (FM) order in a way compatible with potential device applications. Here, we report the growth and properties of single- and few-layer CrTe 2 , a van der Waals (vdW) material, on bilayer graphene by molecular beam epitaxy (MBE). Intrinsic ferromagnetism with a Curie temperature ( T C ) up to 300 K, an atomic magnetic moment of ~0.21 $${\mu }_{{\rm{B}}}$$ μ B /Cr and perpendicular magnetic anisotropy (PMA) constant ( K u ) of 4.89 × 10 5 erg/cm 3 at room temperature in these few-monolayer films have been unambiguously evidenced by superconducting quantum interference device and X-ray magnetic circular dichroism. This intrinsic ferromagnetism has also been identified by the splitting of majority and minority band dispersions with ~0.2 eV at Г point using angle-resolved photoemission spectroscopy. The FM order is preserved with the film thickness down to a monolayer ( T C ~ 200 K), benefiting from the strong PMA and weak interlayer coupling. The successful MBE growth of 2D FM CrTe 2 films with room-temperature ferromagnetism opens a new avenue for developing large-scale 2D magnet-based spintronics devices.more » « less
-
Abstract GaAs‐AlGaAs based nanowire (NW) lasers hold great potential for on‐chip photonic applications, where lasing metrics have steadily improved over the years by optimizing resonator design and surface passivation methods. The factor that will ultimately limit the performance will depend on material properties, such as native‐ or impurity‐induced point defects and their impact on non‐radiative recombination. Here, the role of impurity‐induced point defects on the lasing performance of low‐threshold GaAs(Sb)‐AlGaAs NW‐lasers is evaluated, particularly by exploring Si‐dopants and their associated vacancy complexes. Si‐induced point defects and their self‐compensating nature are identified using correlated atom probe tomography, resonant Raman scattering, and photoluminescence experiments. Under pulsed optical excitation the lasing threshold is remarkably low (<10 µJ cm−2) and insensitive to impurity defects over a wide range of Si doping densities, while excess doping ([Si]>1019 cm−3) imposes increased threshold at low temperature. These characteristics coincide with increased Shockley‐Read‐Hall recombination, reflected by shorter carrier lifetimes, and reduced internal quantum efficiencies (IQE) . Remarkably, despite the lower IQE the presence of self‐compensating Si‐vacancy defects provides an improved temperature stability in lasing threshold with higher characteristic temperature and room‐temperature lasing. These findings highlight an overall large tolerance of lasing metrics to impurity defects in GaAs‐AlGaAs based NW‐lasers.