skip to main content

Title: Productivity and Nutrient Quality of Lemna minor as Affected by Microbiome, CO2 Level, and Nutrient Supply
Rising atmospheric carbon dioxide (CO2) levels can impact plant photosynthesis and productivity and threaten food security, especially when combined with additional environmental stressors. This study addresses the effects of elevated CO2 in combination with low nutrient supply on Lemna minor (common duckweed). We quantified plant growth rate and nutritional quality (protein content) and evaluated whether any adverse effects of elevated CO2, low nutrients, or the combination of the two could be mitigated by plant-microbe interaction. Plants were grown under controlled conditions and were either uninoculated or inoculated with microorganisms from a local pond that supported L. minor populations. Under low nutrients in combination with high CO2, growth (plant area expansion rate) decreased and biomass accumulation increased, albeit with lower nutritional quality (lower percentage of protein per plant biomass). Inoculation with plant-associated microorganisms restored area expansion rate and further stimulated biomass accumulation while supporting a high protein-to-biomass ratio and, thus, a high nutritional quality. These findings indicate that plant-microbe interaction can support a higher nutritional quality of plant biomass under elevated atmospheric CO2 levels, an important finding for both human and non-human consumers during a time of rapid environmental change.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Page Range / eLocation ID:
69 to 85
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review focuses on recently characterized traits of the aquatic floating plant Lemna with an emphasis on its capacity to combine rapid growth with the accumulation of high levels of the essential human micronutrient zeaxanthin due to an unusual pigment composition not seen in other fast-growing plants. In addition, Lemna’s response to elevated CO2 was evaluated in the context of the source–sink balance between plant sugar production and consumption. These and other traits of Lemnaceae are compared with those of other floating aquatic plants as well as terrestrial plants adapted to different environments. It was concluded that the unique features of aquatic plants reflect adaptations to the freshwater environment, including rapid growth, high productivity, and exceptionally strong accumulation of high-quality vegetative storage protein and human antioxidant micronutrients. It was further concluded that the insensitivity of growth rate to environmental conditions and plant source–sink imbalance may allow duckweeds to take advantage of elevated atmospheric CO2 levels via particularly strong stimulation of biomass production and only minor declines in the growth of new tissue. It is proposed that declines in nutritional quality under elevated CO2 (due to regulatory adjustments in photosynthetic metabolism) may be mitigated by plant–microbe interaction, for which duckweeds have a high propensity. 
    more » « less
  2. Development of a nutritious, sustainable food source is essential to address worldwide deficiencies in human micronutrients. Aquatic floating plants (e.g., species in the family Lemnaceae, duckweeds) are uniquely suited for area-efficient productivity with exceptionally high rates of growth and nutritional quality. Here, we provide an overview of the role of dietary micronutrients (with a focus on carotenoids) in human health and the promise of Lemnaceae as sustainable crops. We examine the effect of growth light environment on plant biomass production and levels of the carotenoids zeaxanthin, lutein, and pro-vitamin A (β-carotene), as well as the antioxidant vitamin E (α-tocopherol), and protein. Data on each of these nutrients are reported on a plant dry biomass basis (as relevant for nutrition) as well as relative to the required input of light energy (as relevant to resource-use efficiency). 
    more » « less
  3. Climate change impacts environmental conditions that affect photosynthesis. This review examines the effect of combinations of elevated atmospheric CO2, long photoperiods, and/or unfavorable nitrogen supply. Under moderate stress, perturbed plant source–sink ratio and redox state can be rebalanced but may result in reduced foliar protein content in C3 plants and a higher carbon-to-nitrogen ratio of plant biomass. More severe environmental conditions can trigger pronounced photosynthetic downregulation and impair growth. We comprehensively evaluate available evidence that microbial partners may be able to support plant productivity under challenging environmental conditions by providing (1) nutrients, (2) an additional carbohydrate sink, and (3) regulators of plant metabolism, especially plant redox state. In evaluating the latter mechanism, we note parallels to metabolic control in photosymbioses and microbial regulation of human redox biology. 
    more » « less
  4. Adams, Henry (Ed.)

    The ubiquity of woody plant expansion across many rangelands globally has led to the hypothesis that the global rise in atmospheric carbon dioxide concentration ([CO2]) is a global driver facilitating C3 woody plant expansion. Increasing [CO2] also influences precipitation patterns seasonally and across the landscape, which often results in the prevalence of drought in rangelands. To test the potential for [CO2] to facilitate woody plant growth, we conducted a greenhouse study for 150 days to measure CO2 effects on juveniles from four woody species (Cornus drummondii C.A. Mey., Rhus glabra L., Gleditsia triacanthos L., Juniperus osteosperma Torr.) that are actively expanding into rangelands of North America. We assessed chronic water-stress (nested within CO2 treatments) and its interaction with elevated [CO2] (800 p.p.m.) on plant growth physiology for 84 days. We measured leaf-level gas exchange, tissue-specific starch concentrations and biomass. We found that elevated [CO2] increased photosynthetic rates, intrinsic water-use efficiencies and leaf starch concentrations in all woody species but at different rates and concentrations. Elevated [CO2] increased leaf starch levels for C. drummondii, G. triacanthos, J. osteosperma and R. glabra by 90, 39, 68 and 41%, respectively. We also observed that elevated [CO2] ameliorated the physiological effects of chronic water stress for all our juvenile woody species within this study. Elevated [CO2] diminished the impact of water stress on the juvenile plants, potentially alleviating an abiotic limitation to woody plant establishment in rangelands, thus facilitating the expansion of woody plants in the future.

    more » « less
  5. Abstract. Elevated atmospheric CO2 concentration is expectedto increase leaf CO2 assimilation rates, thus promoting plant growthand increasing leaf area. It also decreases stomatal conductance, allowingwater savings, which have been hypothesized to drive large-scale greening,in particular in arid and semiarid climates. However, the increase in leafarea could reduce the benefits of elevated CO2 concentration through soilwater depletion. The net effect of elevated CO2 on leaf- andcanopy-level gas exchange remains uncertain. To address this question, wecompare the outcomes of a heuristic model based on the Partitioning ofEquilibrium Transpiration and Assimilation (PETA) hypothesis and three modelvariants based on stomatal optimization theory. Predicted relative changes in leaf-and canopy-level gas exchange rates are used as a metric of plant responsesto changes in atmospheric CO2 concentration. Both model approaches predictreductions in leaf-level transpiration rate due to decreased stomatalconductance under elevated CO2, but negligible (PETA) or no(optimization) changes in canopy-level transpiration due to the compensatoryeffect of increased leaf area. Leaf- and canopy-level CO2 assimilationis predicted to increase, with an amplification of the CO2fertilization effect at the canopy level due to the enhanced leaf area. Theexpected increase in vapour pressure deficit (VPD) under warmer conditions isgenerally predicted to decrease the sensitivity of gas exchange toatmospheric CO2 concentration in both models. The consistentpredictions by different models that canopy-level transpiration varieslittle under elevated CO2 due to combined stomatal conductancereduction and leaf area increase highlight the coordination ofphysiological and morphological characteristics in vegetation to maximizeresource use (here water) under altered climatic conditions. 
    more » « less