skip to main content


Search for: All records

Award ID contains: 1702789

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Hydroclimate variability in tropical South America is strongly regulated by the South American Summer Monsoon (SASM). However, past precipitation changes are poorly constrained due to limited observations and high‐resolution paleoproxies. We found that summer precipitation and the El Niño‐Southern Oscillation (ENSO) variability are well registered in tree‐ring stable oxygen isotopes (δ18OTR) ofPolylepis tarapacanain the Chilean and Bolivian Altiplano in the Central Andes (18–22°S, ∼4,500 m a.s.l.) with the northern forests having the strongest climate signal. More enrichedδ18OTRvalues were found at the southern sites likely due to the increasing aridity toward the southwest of the Altiplano. The climate signal ofP. tarapacana δ18OTRis the combined result of moisture transported from the Amazon Basin, modulated by the SASM, ENSO, and local evaporation, and emerges as a novel tree‐ring climate proxy for the southern tropical Andes.

     
    more » « less
  2. Free, publicly-accessible full text available June 1, 2024
  3. Free, publicly-accessible full text available June 1, 2024
  4. Free, publicly-accessible full text available May 1, 2024
  5. The science of tropical dendrochronology is now emerging in regions where tree-ring dating had previously not been considered possible. Here, we combine wood anatomical microsectioning techniques and radiocarbon analysis to produce the first tree-ring chronology with verified annual periodicity for a new dendrochronological species, Neltuma alba (commonly known as “algarrobo blanco”) in the tropical Andes of Bolivia. First, we generated a preliminary chronology composed of six trees using traditional dendrochronological methods (i.e., cross-dating). We then measured the 14 C content on nine selected tree rings from two samples and compared them with the Southern Hemisphere (SH) atmospheric 14 C curves, covering the period of the bomb 14 C peak. We find consistent offsets of 5 and 12 years, respectively, in the calendar dates initially assigned, indicating that several tree rings were missing in the sequence. In order to identify the tree-ring boundaries of the unidentified rings we investigated further by analyzing stem wood microsections to examine anatomical characteristics. These anatomical microsections revealed the presence of very narrow terminal parenchyma defining several tree-ring boundaries within the sapwood, which was not visible in sanded samples under a stereomicroscope. Such newly identified tree rings were consistent with the offsets shown by the radiocarbon analysis and allowed us to correct the calendar dates of the initial chronology. Additional radiocarbon measurements over a new batch of rings of the corrected dated samples resulted in a perfect match between the dendrochronological calendar years and the 14 C dating, which is based on good agreement between the tree-ring 14 C content and the SH 14 C curves. Correlations with prior season precipitation and temperature reveal a strong legacy effect of climate conditions prior to the current Neltuma alba growing season. Overall, our study highlights much potential to complement traditional dendrochronology in tree species with challenging tree-ring boundaries with wood anatomical methods and 14 C analyses. Taken together, these approaches confirm that Neltuma alba can be accurately dated and thereby used in climatic and ecological studies in tropical and subtropical South America. 
    more » « less
  6. Abstract. Given the short span of instrumental precipitationrecords in the South American Altiplano, longer-term hydroclimatic recordsare needed to understand the nature of climate variability and to improvethe predictability of precipitation, a key natural resource for thesocioeconomic development in the Altiplano and adjacent arid lowlands. Inthis region grows Polylepis tarapacana, a long-lived tree species that is very sensitive tohydroclimatic changes and has been widely used for tree-ring studies in thecentral and southern Altiplano. However, in the northern sector of thePeruvian and Chilean Altiplano (16–19∘ S)still exists a gap of high-resolution hydroclimatic data based on tree-ringrecords. Our study provides an overview of the temporal evolution of thelate-spring–mid-summer precipitation for the period 1625–2013 CE at thenorthern South American Altiplano, allowing for the identification of wet ordry periods based on a regional reconstruction from three P. tarapacana chronologies. Anincrease in the occurrence of extreme dry events, together with a decreasingtrend in the reconstructed precipitation, has been recorded since the 1970sin the northern Altiplano within the context of the last ∼4 centuries. The average precipitation over the last 17 years stands outas the driest in our 389-year reconstruction. We reveal a temporal andspatial synchrony across the Altiplano region of dry conditions since themid-1970s. Independent tree-ring-based hydroclimate reconstructions andseveral paleoclimatic records based on other proxies available for thetropical Andes record this synchrony. The influence of El Niño–SouthernOscillation (ENSO) on the northern Altiplano precipitation was detected byour rainfall reconstruction that showed past drier conditions in our studyregion associated with ENSO warm events. The spectral properties of therainfall reconstruction showed strong imprints of ENSO variability atdecadal, sub-decadal, and inter-annual timescales, in particular from thePacific NIÑO 3 sector. Overall, the recent reduction in precipitation incomparison with previous centuries, the increase in extreme dry events andthe coupling between precipitation and ENSO variability reported by thiswork is essential information in the context of the growing demand for waterresources in the Altiplano. This study will contribute to a betterunderstanding of the vulnerability and resilience of the region to theprojected evapotranspiration increase for the 21st century associated withglobal warming. 
    more » « less