skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Two-stream instability with a growth rate insensitive to collisions in a dissipative plasma jet
The two-stream instability (Buneman instability) is traditionally derived as a collisionless instability with the presumption that collisions inhibit this instability. We show here via a combination of a collisional two-fluid model and associated experimental observations made in the Caltech plasma jet experiment, that in fact, a low-frequency mode of the two-stream instability is indifferent to collisions. Despite the collision frequency greatly exceeding the growth rate of the instability, the instability can still cause an exponential growth of electron velocity and a rapid depletion of particle density. Nevertheless, high collisionality has an important effect as it enables the development of a double layer when the cross section of the plasma jet is constricted by a kink-instigated Rayleigh–Taylor instability.  more » « less
Award ID(s):
2105492
PAR ID:
10410437
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Physics of Plasmas
Volume:
30
Issue:
5
ISSN:
1070-664X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT We present numerical simulation results for the propagation of Alfvén waves in the charge starvation regime. This is the regime where the plasma density is below the critical value required to supply the current for the wave. We analyse a conservative scenario where Alfvén waves pick up charges from the region where the charge density exceeds the critical value and advect them along at a high Lorentz factor. The system consisting of the Alfvén wave and charges being carried with it, which we call charge-carrying Alfvén wave (CC-AW), moves through a medium with small, but non-zero, plasma density. We find that the interaction between CC-AW and the stationary medium has a two-stream like instability which leads to the emergence of a strong electric field along the direction of the unperturbed magnetic field. The growth rate of this instability is of the order of the plasma frequency of the medium encountered by the CC-AW. Our numerical code follows the system for hundreds of wave periods. The numerical calculations suggest that the final strength of the electric field is of the order of a few per cent of the AW amplitude. Little radiation is produced by the sinusoidally oscillating currents associated with the instability during the linear growth phase. However, in the non-linear phase, the fluctuating current density produces strong EM radiation near the plasma frequency and limits the growth of the instability. 
    more » « less
  2. Context. The equatorial accretion scenario, caused by the development of the Rayleigh-Taylor (RT) instability at the disk edge, was suggested by accurate three-dimensional magnetohydrodynamic (MHD) modelling, but no observational or experimental confirmation of such phenomena has been evidenced yet. Aims. We studied the propagation of a laterally extended laser-generated plasma stream across a magnetic field and investigated if this kind of structure can be scaled to the case of equatorial ‘tongue’ accretion channels in young stellar objects (YSOs); if so, this would support the possibility of equatorial accretion in young accreting stars. Methods. We conducted a scaled laboratory experiment at the PEARL laser facility. The experiment consists in an optical laser pulse that is focused onto the surface of a Teflon target. The irradiation of the target leads to the expansion of a hot plasma stream into the vacuum, perpendicularly to an externally applied magnetic field. We used a Mach-Zehnder interferometer to diagnose the plasma stream propagation along two axes, to obtain the three-dimensional distribution of the plasma stream. Results. The laboratory experiment shows the propagation of a laterally extended laser-generated plasma stream across a magnetic field. We demonstrate that: (i) such a stream is subject to the development of the RT instability, and (ii) the stream, decomposed into tongues, is able to efficiently propagate perpendicular to the magnetic field. Based on numerical simulations, we show that the origin of the development of the instability in the laboratory is similar to that observed in MHD models of equatorial tongue accretion in YSOs. Conclusions. As we verify that the laboratory plasma scales favourably to accretion inflows of YSOs, our laboratory results support the argument in favour of the possibility of the RT-instability-caused equatorial tongue accretion scenario in the astrophysical case. 
    more » « less
  3. We present the overview of a new experimental apparatus that has been developed to create a single flux rope for studying magnetized plasma jet dynamics, with a focus on the roles of Magnetohydrodynamic instabilities in magnetic reconnection and ion heating. The plasma is generated using coplanar electrodes with a single gas nozzle to create a single flux rope, high-voltage capacitor banks, gas puff valves, and a background magnetic field coil. This setup enables controlled exploration of various plasma stability regimes by adjusting external parameters. A comprehensive suite of diagnostic tools—including a He–Ne interferometer, ion Doppler spectroscopy, and a magnetic field probe array—has been implemented to measure key plasma parameters such as density, temperature, and magnetic field. Initial findings indicate that the apparatus can create a single flux rope and sustain it as a stable jet, a kink-unstable jet, and pinched plasma. In particular, kink instability results in significant ion heating, suggesting that magnetic reconnection may be driven by kink instability. These findings provide valuable insights into plasma dynamics relevant to space physics and magnetized inertial fusion, where fluid instabilities and magnetic reconnection are frequently observed. 
    more » « less
  4. null (Ed.)
    The excitation of low frequency dust acoustic (or dust density) waves in a dusty plasma can be driven by the flow of ions relative to dust. We consider the nonlinear development of the ion–dust streaming instability in a highly collisional plasma, where the ion and dust collision frequencies are a significant fraction of their corresponding plasma frequencies. This collisional parameter regime may be relevant to dusty plasma experiments under microgravity or ground-based conditions with high gas pressure. One-dimensional particle-in-cell simulations are presented, which take into account collisions of ions and dust with neutrals, and a background electric field that drives the ion flow. Ion flow speeds of the order of a few times thermal are considered. Waveforms of the dust density are found to have broad troughs and sharp crests in the nonlinear phase. The results are compared with the nonlinear development of the ion–dust streaming instability in a plasma with low collisionality. 
    more » « less
  5. Kraus, Kristin L (Ed.)
    A variable specific-impulse magnetoplasma rocket (VASIMR) is a potential means of powering future deep space missions. The engine uses radiofrequency (RF) energy to first ionize argon with a helicon antenna and to subsequently heat the resulting plasma through ion cyclotron heating (ICH) which then creates thrust in a magnetic nozzle. Our previous studies have modeled the increased specific impulse and thrust generated in a collisionless plasma. This work includes ion-neutral collisions in the simulation, which reduces the number of ions in the plasma stream and thus reduces thrust. This study analyzes the loss of thruster efficiency caused by such collisions in the nozzle region of the VASIMR. The plasma is considered weakly ionized, and other plasma effects, such as ion-ion and ion-electron collisions, are ignored. MonteCarlo methods are used to determine ion losses from a stream of individual argon ions as they move along the engine. Neutral densities are inferred from stipulated mass flow rates and ionization fractions. These are functions of the initial ionization process involving a helicon antenna, whose properties are inferred from this study, but not directly dealt with. Ion temperatures, and hence velocities, are determined as products of the ICH process. Efficiency of the engine varies widely with initial mass flow rates and the subsequent neutral backgrounds these produce, but in this simple study, collisional losses are large, for even moderate neutral backgrounds. An effective VASIMR thus requires an extremely efficient initial ionization mechanism. 
    more » « less