skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Power Converter Circuit Design Automation Using Parallel Monte Carlo Tree Search
The tidal waves of modern electronic/electrical devices have led to increasing demands for ubiquitous application-specific power converters. A conventional manual design procedure of such power converters is computation- and labor-intensive, which involves selecting and connecting component devices, tuning component-wise parameters and control schemes, and iteratively evaluating and optimizing the design. To automate and speed up this design process, we propose an automatic framework that designs custom power converters from design specifications using Monte Carlo Tree Search. Specifically, the framework embraces the upper-confidence-bound-tree (UCT), a variant of Monte Carlo Tree Search, to automate topology space exploration with circuit design specification-encoded reward signals. Moreover, our UCT-based approach can exploit small offline data via the specially designed default policy and can run in parallel to accelerate topology space exploration. Further, it utilizes a hybrid circuit evaluation strategy to substantially reduce design evaluation costs. Empirically, we demonstrated that our framework could generate energy-efficient circuit topologies for various target voltage conversion ratios. Compared to existing automatic topology optimization strategies, the proposed method is much more computationally efficient—the sequential version can generate topologies with the same quality while being up to 67% faster. The parallelization schemes can further achieve high speedups compared to the sequential version.  more » « less
Award ID(s):
1948457
PAR ID:
10410454
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
ACM Transactions on Design Automation of Electronic Systems
Volume:
28
Issue:
2
ISSN:
1084-4309
Page Range / eLocation ID:
1 to 33
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract: High-efficiency energy conversion systems have become increasingly important due to their wide use in all electronic systems such as data centers, smart mobile devices, E-vehicles, medical instruments, and so forth. Complex and interdependent parameters make optimal designs of power converters challenging to get. Recent research has shown that machine learning (ML) algorithms, such as reinforcement learning (RL), show great promise in design of such converter circuits. A trained RL agent can search for optimal design parameters for power conversion circuit topologies under targeted application requirements. Training an RL agent requires numerous circuit simulations. It requires significantly more training iterations when the tolerance of circuit components due to manufacturing inconsistency, aging, and temperature variation is considered. As a result, they may take days to complete, primarily because of the slow time-domain circuit simulation. This paper proposes a new FPGA architecture that accelerates the circuit simulation and hence substantially speeds up the RL-based design method for power converters. Our new architecture supports all power electronic circuit converters and their variations. It substantially improves the training speed of RL-based design methods. High-level synthesis (HLS) was used to build the accelerator on Amazon Web Service (AWS) F1 instance. An AWS virtual PC hosts the training algorithm. The host interacts with the FPGA accelerator by updating the circuit parameters, initiating simulation, and collecting the simulation results during training iterations. A script was created on the host side to facilitate this design method to convert a netlist containing circuit topology and parameters into core matrices in the FPGA accelerator. Experimental results showed 60× overall speedup of our RL-based design method in comparison with using a popular commercial simulator, PowerSim. 
    more » « less
  2. Modeling plays a vital role in the design of advanced power converters. Commonly, modeling is completed using either dedicated hand analysis, which must be completed individually for each topology, or time-stepping circuit simulations, which are insufficiently rapid for broad analysis considering a wide range of potential designs or operating points. Discrete time state-space modeling of switching converters has shown merits in rapid analysis and generality to arbitrary circuit topologies but is hampered by difficulty incorporating nonlinear elements. In this work, we investigate methods for the incorporation of nonlinear elements into a generalized discrete time state-space modeling framework and showcase the utility of the approach for use in the converter design process. 
    more » « less
  3. Analog circuit design requires substantial human expertise and involvement, which is a significant roadblock to design productivity. Bayesian Optimization (BO), a popular machine-learning-based optimization strategy, has been leveraged to automate analog design given its applicability across various circuit topologies and technologies. Traditional BO methods employ black-box Gaussian Process surrogate models and optimized labeled data queries to find optimization solutions by trading off between exploration and exploitation. However, the search for the optimal design solution in BO can be expensive from both a computational and data usage point of view, particularly for high-dimensional optimization problems. This paper presents ADO-LLM, the first work integrating large language models (LLMs) with Bayesian Optimization for analog design optimization. ADO-LLM leverages the LLM’s ability to infuse domain knowledge to rapidly generate viable design points to remedy BO's inefficiency in finding high-value design areas specifically under the limited design space coverage of the BO's probabilistic surrogate model. In the meantime, sampling of design points evaluated in the iterative BO process provides quality demonstrations for the LLM to generate high-quality design points while leveraging infused broad design knowledge. Furthermore, the diversity brought by BO's exploration enriches the contextual understanding of the LLM and allows it to more broadly search in the design space and prevent repetitive and redundant suggestions. We evaluate the proposed framework on two different types of analog circuits and demonstrate notable improvements in design efficiency and effectiveness. 
    more » « less
  4. null (Ed.)
    Machine learning applied to architecture design presents a promising opportunity with broad applications. Recent deep reinforcement learning (DRL) techniques, in particular, enable efficient exploration in vast design spaces where conventional design strategies may be inadequate. This paper proposes a novel deep reinforcement framework, taking routerless networks-on-chip (NoC) as an evaluation case study. The new framework successfully resolves problems with prior design approaches, which are either unreliable due to random searches or inflexible due to severe design space restrictions. The framework learns (near-)optimal loop placement for routerless NoCs with various design constraints. A deep neural network is developed using parallel threads that efficiently explore the immense routerless NoC design space with a Monte Carlo search tree. Experimental results show that, compared with conventional mesh, the proposed deep reinforcement learning (DRL) routerless design achieves a 3.25x increase in throughput, 1.6x reduction in packet latency, and 5x reduction in power. Compared with the state-of-the-art routerless NoC, DRL achieves a 1.47x increase in throughput, 1.18x reduction in packet latency, 1.14x reduction in average hop count, and 6.3% lower power consumption. 
    more » « less
  5. The dynamic response of power grids to small transient events or persistent stochastic disturbances influences their stable operation. This paper studies the effect of topology on the linear time-invariant dynamics of power networks. For a variety of stability metrics, a unified framework based on the H2 -norm of the system is presented. The proposed framework assesses the robustness of power grids to small disturbances and is used to study the optimal placement of new lines on existing networks as well as the design of radial (tree) and meshed (loopy) topologies for new networks. Although the design task can be posed as a mixed-integer semidefinite program (MI-SDP), its performance does not scale well with network size. Using McCormick relaxation, the topology design problem can be reformulated as a mixed-integer linear program (MILP). To improve the computation time, graphical properties are exploited to provide tighter bounds on the continuous optimization variables. Numerical tests on the IEEE 39-bus feeder demonstrate the efficacy of the optimal topology in minimizing disturbances. 
    more » « less