Summary Structural failure time models are causal models for estimating the effect of time-varying treatments on a survival outcome. G-estimation and artificial censoring have been proposed for estimating the model parameters in the presence of time-dependent confounding and administrative censoring. However, most existing methods require manually pre-processing data into regularly spaced data, which may invalidate the subsequent causal analysis. Moreover, the computation and inference are challenging due to the nonsmoothness of artificial censoring. We propose a class of continuous-time structural failure time models that respects the continuous-time nature of the underlying data processes. Under a martingale condition of no unmeasured confounding, we show that the model parameters are identifiable from a potentially infinite number of estimating equations. Using the semiparametric efficiency theory, we derive the first semiparametric doubly robust estimators, which are consistent if the model for the treatment process or the failure time model, but not necessarily both, is correctly specified. Moreover, we propose using inverse probability of censoring weighting to deal with dependent censoring. In contrast to artificial censoring, our weighting strategy does not introduce nonsmoothness in estimation and ensures that resampling methods can be used for inference.
more »
« less
Minimax Kernel Machine Learning for a Class of Doubly Robust Functionals with Application to Proximal Causal Inference
Robins et al. (2008) introduced a class of influence functions (IFs) which could be used to obtain doubly robust moment functions for the corresponding parameters. However, that class does not include the IF of parameters for which the nuisance functions are solutions to integral equations. Such parameters are particularly important in the field of causal inference, specifically in the recently proposed proximal causal inference framework of Tchetgen Tchetgen et al. (2020), which allows for estimating the causal effect in the presence of latent confounders. In this paper, we first extend the class of Robins et al. to include doubly robust IFs in which the nuisance functions are solutions to integral equations. Then we demonstrate that the double robustness property of these IFs can be leveraged to construct estimating equations for the nuisance functions, which enables us to solve the integral equations without resorting to parametric models. We frame the estimation of the nuisance functions as a minimax optimization problem. We provide convergence rates for the nuisance functions and conditions required for asymptotic linearity of the estimator of the parameter of interest. The experiment results demonstrate that our proposed methodology leads to robust and high-performance estimators for average causal effect in the proximal causal inference framework.
more »
« less
- Award ID(s):
- 1942239
- PAR ID:
- 10410535
- Editor(s):
- Gustau Camps-Valls; Francisco J. R. Ruiz; Isabel Valera
- Date Published:
- Journal Name:
- Proceedings of The 25th International Conference on Artificial Intelligence and Statistics
- Volume:
- 151
- Page Range / eLocation ID:
- 7210-7239
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We propose a semiparametric Bayesian methodology for estimating the average treatment effect (ATE) within the potential outcomes framework using observational data with high-dimensional nuisance parameters. Our method introduces a Bayesian debiasing procedure that corrects for bias arising from nuisance estimation and employs a targeted modeling strategy based on summary statistics rather than the full data. These summary statistics are identified in a debiased manner, enabling the estimation of nuisance bias via weighted observables and facilitating hierarchical learning of the ATE. By combining debiasing with sample splitting, our approach separates nuisance estimation from inference on the target parameter, reducing sensitivity to nuisance model specification. We establish that, under mild conditions, the marginal posterior for the ATE satisfies a Bernstein-von Mises theorem when both nuisance models are correctly specified and remains consistent and robust when only one is correct, achieving Bayesian double robustness. This ensures asymptotic efficiency and frequentist validity. Extensive simulations confirm the theoretical results, demonstrating accurate point estimation and credible intervals with nominal coverage, even in high-dimensional settings. The proposed framework can also be extended to other causal estimands, and its key principles offer a general foundation for advancing Bayesian semiparametric inference more broadly.more » « less
-
In modern large-scale observational studies, data collection constraints often result in partially labeled datasets, posing challenges for reliable causal inference, especially due to potential labeling bias and relatively small size of the labeled data. This paper introduces a decaying missing-at-random (decaying MAR) framework and associated approaches for doubly robust causal inference on treatment effects in such semi-supervised (SS) settings. This simultaneously addresses selection bias in the labeling mechanism and the extreme imbalance between labeled and unlabeled groups, bridging the gap between the standard SS and missing data literatures, while throughout allowing for confounded treatment assignment and high-dimensional confounders under appropriate sparsity conditions. To ensure robust causal conclusions, we propose a bias-reduced SS (BRSS) estimator for the average treatment effect, a type of 'model doubly robust' estimator appropriate for such settings, establishing asymptotic normality at the appropriate rate under decaying labeling propensity scores, provided that at least one nuisance model is correctly specified. Our approach also relaxes sparsity conditions beyond those required in existing methods, including standard supervised approaches. Recognizing the asymmetry between labeling and treatment mechanisms, we further introduce a de-coupled BRSS (DC-BRSS) estimator, which integrates inverse probability weighting (IPW) with bias-reducing techniques in nuisance estimation. This refinement further weakens model specification and sparsity requirements. Numerical experiments confirm the effectiveness and adaptability of our estimators in addressing labeling bias and model misspecification.more » « less
-
The vast majority of literature on evaluating the significance of a treatment effect based on observational data has been confined to discrete treatments. These methods are not applicable to drawing inference for a continuous treatment, which arises in many important applications. To adjust for confounders when evaluating a continuous treatment, existing inference methods often rely on discretizing the treatment or using (possibly misspecified) parametric models for the effect curve. Recently, Kennedy et al. (J. R. Stat. Soc. Ser. B. Stat. Methodol. 79 (2017) 1229–1245) proposed nonparametric doubly robust estimation for a continuous treatment effect in observational studies. However, inference for the continuous treatment effect is a harder problem. To the best of our knowledge, a completely nonparametric doubly robust approach for inference in this setting is not yet available. We develop such a nonparametric doubly robust procedure in this paper for making inference on the continuous treatment effect curve. Using empirical process techniques for local U- and V-processes, we establish the test statistic’s asymptotic distribution. Furthermore, we propose a wild bootstrap procedure for implementing the test in practice. In addition, we define a version of the test procedure based on sample splitting. We illustrate the new method(s) via simulations and a study of a constructed dataset relating the effect of nurse staffing hours on hospital performance. We implement our doubly robust dose response test in the R package DRDRtest on CRAN.more » « less
-
Imbens, G. (Ed.)Many economic and causal parameters depend on nonparametric or high dimensional first steps. We give a general construction of locally robust/orthogonal moment functions for GMM, where first steps have no effect, locally, on average moment functions. Using these orthogonal moments reduces model selection and regularization bias, as is important in many applications, especially for machine learning first steps. Also, associated standard errors are robust to misspecification when there is the same number of moment functions as parameters of interest. We use these orthogonal moments and cross-fitting to construct debiased machine learning estimators of functions of high dimensional conditional quantiles and of dynamic discrete choice parameters with high dimensional state variables. We show that additional first steps needed for the orthogonal moment functions have no effect, globally, on average orthogonal moment functions. We give a general approach to estimating those additional first steps.We characterize double robustness and give a variety of new doubly robust moment functions.We give general and simple regularity conditions for asymptotic theory.more » « less
An official website of the United States government

