skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1942239

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Francisco Ruiz, Jennifer Dy (Ed.)
    Graphical models such as Markov random fields (MRFs) that are associated with undirected graphs, and Bayesian networks (BNs) that are associated with directed acyclic graphs, have proven to be a very popular approach for reasoning under uncertainty, prediction problems and causal inference. Parametric MRF likelihoods are well-studied for Gaussian and categorical data. However, in more complicated parametric and semi-parametric set- tings, likelihoods specified via clique potential functions are generally not known to be congenial (jointly well-specified) or non-redundant. Congenial and non-redundant DAG likelihoods are far simpler to specify in both parametric and semi-parametric settings by modeling Markov factors in the DAG factorization. However, DAG likelihoods specified in this way are not guaranteed to coincide in distinct DAGs within the same Markov equivalence class. This complicates likelihoods based model selection procedures for DAGs by “sneaking in” potentially un- warranted assumptions about edge orientations. In this paper we link a density function decomposition due to Chen with the clique factorization of MRFs described by Lauritzen to provide a general likelihood for MRF models. The proposed likelihood is composed of variationally independent, and non-redundant closed form functionals of the observed data distribution, and is sufficiently general to apply to arbitrary parametric and semi-parametric models. We use an extension of our developments to give a general likelihood for DAG models that is guaranteed to coincide for all members of a Markov equivalence class. Our results have direct applications for model selection and semi-parametric inference. 
    more » « less
  2. Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models. 
    more » « less
  3. Gustau Camps-Valls; Francisco J. R. Ruiz; Isabel Valera (Ed.)
    Robins et al. (2008) introduced a class of influence functions (IFs) which could be used to obtain doubly robust moment functions for the corresponding parameters. However, that class does not include the IF of parameters for which the nuisance functions are solutions to integral equations. Such parameters are particularly important in the field of causal inference, specifically in the recently proposed proximal causal inference framework of Tchetgen Tchetgen et al. (2020), which allows for estimating the causal effect in the presence of latent confounders. In this paper, we first extend the class of Robins et al. to include doubly robust IFs in which the nuisance functions are solutions to integral equations. Then we demonstrate that the double robustness property of these IFs can be leveraged to construct estimating equations for the nuisance functions, which enables us to solve the integral equations without resorting to parametric models. We frame the estimation of the nuisance functions as a minimax optimization problem. We provide convergence rates for the nuisance functions and conditions required for asymptotic linearity of the estimator of the parameter of interest. The experiment results demonstrate that our proposed methodology leads to robust and high-performance estimators for average causal effect in the proximal causal inference framework. 
    more » « less
  4. Bernhard Schölkopf, Caroline Uhler (Ed.)
    Recently there has been sustained interest in modifying prediction algorithms to satisfy fairness constraints. These constraints are typically complex nonlinear functionals of the observed data distribution. Focusing on the path-specific causal constraints, we introduce new theoretical results and optimization techniques to make model training easier and more accurate. Specifically, we show how to reparameterize the observed data likelihood such that fairness constraints correspond directly to parameters that appear in the likelihood, transforming a complex constrained optimization objective into a simple optimization problem with box constraints. We also exploit methods from empirical likelihood theory in statistics to improve predictive performance by constraining baseline covariates, without requiring parametric models. We combine the merits of both proposals to optimize a hybrid reparameterized likelihood. The techniques presented here should be applicable more broadly to fair prediction proposals that impose constraints on predictive models. 
    more » « less
  5. S. Koyejo; S. Mohamed; A. Agarwal; D. Belgrave; K. Cho, A. Oh (Ed.)
    We focus on causal discovery in the presence of measurement error in linear systems where the mixing matrix, i.e., the matrix indicating the independent exogenous noise terms pertaining to the observed variables, is identified up to permutation and scaling of the columns. We demonstrate a somewhat surprising connection between this problem and causal discovery in the presence of unobserved parentless causes, in the sense that there is a mapping, given by the mixing matrix, between the underlying models to be inferred in these problems. Consequently, any identifiability result based on the mixing matrix for one model translates to an identifiability result for the other model. We characterize to what extent the causal models can be identified under a two-part faithfulness assumption. Under only the first part of the assumption (corresponding to the conventional definition of faithfulness), the structure can be learned up to the causal ordering among an ordered grouping of the variables but not all the edges across the groups can be identified. We further show that if both parts of the faithfulness assumption are imposed, the structure can be learned up to a more refined ordered grouping. As a result of this refinement, for the latent variable model with unobserved parentless causes, the structure can be identified. Based on our theoretical results, we propose causal structure learning methods for both models, and evaluate their performance on synthetic data. 
    more » « less
  6. de Campos, Cassio and (Ed.)
    Directed acyclic graphs (DAGs) with hidden variables are often used to characterize causal relations between variables in a system. When some variables are unobserved, DAGs imply a notoriously complicated set of constraints on the distribution of observed variables. In this work, we present entropic inequality constraints that are implied by e- separation relations in hidden variable DAGs with discrete observed variables. The constraints can intuitively be understood to follow from the fact that the capacity of variables along a causal path- way to convey information is restricted by their entropy; e.g. at the extreme case, a variable with entropy 0 can convey no information. We show how these constraints can be used to learn about the true causal model from an observed data distribution. In addition, we propose a measure of causal influence called the minimal mediary entropy, and demonstrate that it can augment traditional measures such as the average causal effect. 
    more » « less
  7. Cassio de Campos; Marloes H. Maathuis (Ed.)
    When data contains measurement errors, it is necessary to make modeling assumptions relating the error-prone measurements to the unobserved true values. Work on measurement error has largely focused on models that fully identify the parameter of interest. As a result, many practically useful models that result in bounds on the target parameter -- known as partial identification -- have been neglected. In this work, we present a method for partial identification in a class of measurement error models involving discrete variables. We focus on models that impose linear constraints on the tar- get parameter, allowing us to compute partial identification bounds using off-the-shelf LP solvers. We show how several common measurement error assumptions can be composed with an extended class of instrumental variable-type models to create such linear constraint sets. We further show how this approach can be used to bound causal parameters, such as the average treatment effect, when treatment or outcome variables are measured with error. Using data from the Oregon Health Insurance Experiment, we apply this method to estimate bounds on the effect Medicaid enrollment has on depression when depression is measured with error. 
    more » « less
  8. Cassio de Campos, Marloes H. (Ed.)
    Causal analyses of longitudinal data generally assume that the qualitative causal structure relating variables remains invariant over time. In structured systems that transition between qualitatively differ- ent states in discrete time steps, such an approach is deficient on two fronts. First, time-varying variables may have state-specific causal relationships that need to be captured. Second, an intervention can result in state transitions downstream of the intervention different from those actually observed in the data. In other words, interventions may counter- factually alter the subsequent temporal evolution of the system. We introduce a generalization of causal graphical models, Path Dependent Structural Equation Models (PDSEMs), that can describe such systems. We show how causal inference may be performed in such models and illustrate its use in simulations and data obtained from a septoplasty surgical procedure. 
    more » « less
  9. Arindam Banerjee; Kenji Fukumizu (Ed.)
    The data drawn from biological, economic, and social systems are often confounded due to the presence of unmeasured variables. Prior work in causal discovery has focused on discrete search procedures for selecting acyclic directed mixed graphs (ADMGs), specifically ancestral ADMGs, that encode ordinary conditional independence constraints among the observed variables of the system. However, confounded systems also exhibit more general equality restrictions that cannot be represented via these graphs, placing a limit on the kinds of structures that can be learned using ancestral ADMGs. In this work, we derive differentiable algebraic constraints that fully characterize the space of ancestral ADMGs, as well as more general classes of ADMGs, arid ADMGs and bow-free ADMGs, that capture all equality restrictions on the observed variables. We use these constraints to cast causal discovery as a continuous optimization problem and design differentiable procedures to find the best fitting ADMG when the data comes from a confounded linear system of equations with correlated errors. We demonstrate the efficacy of our method through simulations and application to a protein expression dataset. Code implementing our methods is open-source and publicly available at https: //gitlab.com/rbhatta8/dcd and will be incorporated into the Ananke package. 
    more » « less