skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Rationality of twists of the Siegel modular variety of genus 2 and level 3
Let  ρ ¯ : G Q → GSp 4 ⁡ ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the  3 3 -torsion of a principally polarized abelian surface  A / Q A/\mathbf {Q} . We prove that the moduli space  A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces  B / Q B/\mathbf {Q} admitting a symplectic isomorphism  B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over  Q \mathbf {Q} when  ρ ¯ \overline {\rho } is surjective, even though it is both rational over  C \mathbf {C} and unirational over  Q \mathbf {Q} via a map of degree  6 6 .  more » « less
Award ID(s):
2001097
PAR ID:
10410598
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proceedings of the American Mathematical Society
Volume:
150
Issue:
5
ISSN:
0002-9939
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Let $$F$$ be a totally real field in which $$p$$ is unramified. Let $$\overline{r}:G_{F}\rightarrow \text{GL}_{2}(\overline{\mathbf{F}}_{p})$$ be a modular Galois representation that satisfies the Taylor–Wiles hypotheses and is tamely ramified and generic at a place $$v$$ above $$p$$ . Let $$\mathfrak{m}$$ be the corresponding Hecke eigensystem. We describe the $$\mathfrak{m}$$ -torsion in the $$\text{mod}\,p$$ cohomology of Shimura curves with full congruence level at $$v$$ as a $$\text{GL}_{2}(k_{v})$$ -representation. In particular, it only depends on $$\overline{r}|_{I_{F_{v}}}$$ and its Jordan–Hölder factors appear with multiplicity one. The main ingredients are a description of the submodule structure for generic $$\text{GL}_{2}(\mathbf{F}_{q})$$ -projective envelopes and the multiplicity one results of Emerton, Gee and Savitt [Lattices in the cohomology of Shimura curves, Invent. Math.   200 (1) (2015), 1–96]. 
    more » « less
  2. Let$$G$$be a split reductive group over the ring of integers in a$$p$$-adic field with residue field$$\mathbf {F}$$. Fix a representation$$\overline {\rho }$$of the absolute Galois group of an unramified extension of$$\mathbf {Q}_p$$, valued in$$G(\mathbf {F})$$. We study the crystalline deformation ring for$$\overline {\rho }$$with a fixed$$p$$-adic Hodge type that satisfies an analog of the Fontaine–Laffaille condition for$$G$$-valued representations. In particular, we give a root theoretic condition on the$$p$$-adic Hodge type which ensures that the crystalline deformation ring is formally smooth. Our result improves on all known results for classical groups not of type A and provides the first such results for exceptional groups. 
    more » « less
  3. Suppose that $$\mathbf{G}$$ is a connected reductive group over a finite extension $$F/\mathbb{Q}_{p}$$ and that $$C$$ is a field of characteristic  $$p$$ . We prove that the group $$\mathbf{G}(F)$$ admits an irreducible admissible supercuspidal, or equivalently supersingular, representation over  $$C$$ . 
    more » « less
  4. We show that every finite abelian group occurs as the group of rational points of an ordinary abelian variety over F 2 \mathbb {F}_2 , F 3 \mathbb {F}_3 and F 5 \mathbb {F}_5 . We produce partial results for abelian varieties over a general finite field  F q \mathbb {F}_q . In particular, we show that certain abelian groups cannot occur as groups of rational points of abelian varieties over F q \mathbb {F}_q when q q is large. Finally, we show that every finite cyclic group arises as the group of rational points of infinitely many simple abelian varieties over  F 2 \mathbb {F}_2
    more » « less
  5. null (Ed.)
    Abstract We study the inverse Jacobian problem for the case of Picard curves over $${\mathbb {C}}$$ C . More precisely, we elaborate on an algorithm that, given a small period matrix $$\varOmega \in {\mathbb {C}}^{3\times 3}$$ Ω ∈ C 3 × 3 corresponding to a principally polarized abelian threefold equipped with an automorphism of order 3, returns a Legendre–Rosenhain equation for a Picard curve with Jacobian isomorphic to the given abelian variety. Our method corrects a formula obtained by Koike–Weng (Math Comput 74(249):499–518, 2005) which is based on a theorem of Siegel. As a result, we apply the algorithm to obtain equations of all the isomorphism classes of Picard curves with maximal complex multiplication by the maximal order of the sextic CM-fields with class number at most $$4$$ 4 . In particular, we obtain the complete list of maximal CM Picard curves defined over $${\mathbb {Q}}$$ Q . In the appendix, Vincent gives a correction to the generalization of Takase’s formula for the inverse Jacobian problem for hyperelliptic curves given in [Balakrishnan–Ionica–Lauter–Vincent, LMS J. Comput. Math., 19(suppl. A):283-300, 2016]. 
    more » « less