Abstract We present an efficient algorithm to compute the Euler factor of a genus 2 curve$$C/\mathbb {Q}$$ at an odd primepthat is of bad reduction forCbut of good reduction for the Jacobian ofC(a prime of “almost good” reduction). Our approach is based on the theory of cluster pictures introduced by Dokchitser, Dokchitser, Maistret, and Morgan, which allows us to reduce the problem to a short, explicit computation over$$\mathbb {Z}$$ and$$\mathbb {F}_p$$ , followed by a point-counting computation on two elliptic curves over$$\mathbb {F}_p$$ , or a single elliptic curve over$$\mathbb {F}_{p^2}$$ . A key feature of our approach is that we avoid the need to compute a regular model forC. This allows us to efficiently compute many examples that are infeasible to handle using the algorithms currently available in computer algebra systems such as Magma and Pari/GP.
more »
« less
An inverse Jacobian algorithm for Picard curves
Abstract We study the inverse Jacobian problem for the case of Picard curves over $${\mathbb {C}}$$ C . More precisely, we elaborate on an algorithm that, given a small period matrix $$\varOmega \in {\mathbb {C}}^{3\times 3}$$ Ω ∈ C 3 × 3 corresponding to a principally polarized abelian threefold equipped with an automorphism of order 3, returns a Legendre–Rosenhain equation for a Picard curve with Jacobian isomorphic to the given abelian variety. Our method corrects a formula obtained by Koike–Weng (Math Comput 74(249):499–518, 2005) which is based on a theorem of Siegel. As a result, we apply the algorithm to obtain equations of all the isomorphism classes of Picard curves with maximal complex multiplication by the maximal order of the sextic CM-fields with class number at most $$4$$ 4 . In particular, we obtain the complete list of maximal CM Picard curves defined over $${\mathbb {Q}}$$ Q . In the appendix, Vincent gives a correction to the generalization of Takase’s formula for the inverse Jacobian problem for hyperelliptic curves given in [Balakrishnan–Ionica–Lauter–Vincent, LMS J. Comput. Math., 19(suppl. A):283-300, 2016].
more »
« less
- Award ID(s):
- 1802323
- PAR ID:
- 10274009
- Date Published:
- Journal Name:
- Research in Number Theory
- Volume:
- 7
- Issue:
- 2
- ISSN:
- 2522-0160
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We give an algorithm to compute representatives of the conjugacy classes of semisimple square integral matrices with given minimal and characteristic polynomials. We also give an algorithm to compute the $$\mathbb {F}_q$$ -isomorphism classes of abelian varieties over a finite field $$\mathbb {F}_q$$ which belong to an isogeny class determined by a characteristic polynomial hof Frobenius when his ordinary, or qis prime and hhas no real roots.more » « less
-
We show that every finite abelian group occurs as the group of rational points of an ordinary abelian variety over , and . We produce partial results for abelian varieties over a general finite field . In particular, we show that certain abelian groups cannot occur as groups of rational points of abelian varieties over when is large. Finally, we show that every finite cyclic group arises as the group of rational points of infinitely many simple abelian varieties over .more » « less
-
Abstract For a smooth projective varietyXover an algebraic number fieldka conjecture of Bloch and Beilinson predicts that the kernel of the Albanese map ofXis a torsion group. In this article we consider a product$$X=C_1\times \cdots \times C_d$$ of smooth projective curves and show that if the conjecture is true for any subproduct of two curves, then it is true forX. For a product$$X=C_1\times C_2$$ of two curves over$$\mathbb {Q} $$ with positive genus we construct many nontrivial examples that satisfy the weaker property that the image of the natural map$$J_1(\mathbb {Q})\otimes J_2(\mathbb {Q})\xrightarrow {\varepsilon }{{\,\textrm{CH}\,}}_0(C_1\times C_2)$$ is finite, where$$J_i$$ is the Jacobian variety of$$C_i$$ . Our constructions include many new examples of non-isogenous pairs of elliptic curves$$E_1, E_2$$ with positive rank, including the first known examples of rank greater than 1. Combining these constructions with our previous result, we obtain infinitely many nontrivial products$$X=C_1\times \cdots \times C_d$$ for which the analogous map$$\varepsilon $$ has finite image.more » « less
-
Abstract Given a prime powerqand$$n \gg 1$$ , we prove that every integer in a large subinterval of the Hasse–Weil interval$$[(\sqrt{q}-1)^{2n},(\sqrt{q}+1)^{2n}]$$ is$$\#A({\mathbb {F}}_q)$$ for some ordinary geometrically simple principally polarized abelian varietyAof dimensionnover$${\mathbb {F}}_q$$ . As a consequence, we generalize a result of Howe and Kedlaya for$${\mathbb {F}}_2$$ to show that for each prime powerq, every sufficiently large positive integer is realizable, i.e.,$$\#A({\mathbb {F}}_q)$$ for some abelian varietyAover$${\mathbb {F}}_q$$ . Our result also improves upon the best known constructions of sequences of simple abelian varieties with point counts towards the extremes of the Hasse–Weil interval. A separate argument determines, for fixedn, the largest subinterval of the Hasse–Weil interval consisting of realizable integers, asymptotically as$$q \rightarrow \infty $$ ; this gives an asymptotically optimal improvement of a 1998 theorem of DiPippo and Howe. Our methods are effective: We prove that if$$q \le 5$$ , then every positive integer is realizable, and for arbitraryq, every positive integer$$\ge q^{3 \sqrt{q} \log q}$$ is realizable.more » « less
An official website of the United States government

