Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We prove the unbounded denominators conjecture in the theory of noncongruence modular forms for finite index subgroups of . Our result includes also Mason’s generalization of the original conjecture to the setting of vector-valued modular forms, thereby supplying a new path to the congruence property in rational conformal field theory. The proof involves a new arithmetic holonomicity bound of a potential-theoretic flavor, together with Nevanlinna second main theorem, the congruence subgroup property of , and a close description of the Fuchsian uniformization of the Riemann surface .more » « lessFree, publicly-accessible full text available February 6, 2026
-
Let ρ ¯ : G Q → GSp 4 ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the 3 3 -torsion of a principally polarized abelian surface A / Q A/\mathbf {Q} . We prove that the moduli space A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces B / Q B/\mathbf {Q} admitting a symplectic isomorphism B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over Q \mathbf {Q} when ρ ¯ \overline {\rho } is surjective, even though it is both rational over C \mathbf {C} and unirational over Q \mathbf {Q} via a map of degree 6 6 .more » « less
-
Abstract We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces $$A$$ A over $${\mathbf {Q}}$$ Q with $$\operatorname{End}_{ {\mathbf {C}}}A={\mathbf {Z}}$$ End C A = Z . We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields.more » « less
An official website of the United States government
