skip to main content


Search for: All records

Award ID contains: 2001097

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 1, 2024
  2. Let  ρ ¯ : G Q → GSp 4 ⁡ ( F 3 ) \overline {\rho }: G_{\mathbf {Q}} \rightarrow \operatorname {GSp}_4(\mathbf {F}_3) be a continuous Galois representation with cyclotomic similitude character. Equivalently, consider ρ ¯ \overline {\rho } to be the Galois representation associated to the  3 3 -torsion of a principally polarized abelian surface  A / Q A/\mathbf {Q} . We prove that the moduli space  A 2 ( ρ ¯ ) \mathcal {A}_2(\overline {\rho }) of principally polarized abelian surfaces  B / Q B/\mathbf {Q} admitting a symplectic isomorphism  B [ 3 ] ≃ ρ ¯ B[3] \simeq \overline {\rho } of Galois representations is never rational over  Q \mathbf {Q} when  ρ ¯ \overline {\rho } is surjective, even though it is both rational over  C \mathbf {C} and unirational over  Q \mathbf {Q} via a map of degree  6 6 . 
    more » « less
  3. Abstract We show that abelian surfaces (and consequently curves of genus 2) over totally real fields are potentially modular. As a consequence, we obtain the expected meromorphic continuation and functional equations of their Hasse–Weil zeta functions. We furthermore show the modularity of infinitely many abelian surfaces  $A$ A over  ${\mathbf {Q}}$ Q with  $\operatorname{End}_{ {\mathbf {C}}}A={\mathbf {Z}}$ End C A = Z . We also deduce modularity and potential modularity results for genus one curves over (not necessarily CM) quadratic extensions of totally real fields. 
    more » « less
  4. null (Ed.)