Reliability enhancement of microgrids is challenged by environmental and operational failures. Centrally controlled microgrids are susceptible to failures at high probability due to a single-point-of-failure, e.g. the central controller. True decentralization of microgrid architecture entails elimination of the central controller, attaining a parallel configuration for the system. In this paper, decentralized microgrid control architecture is proposed as a solution for reliability degradation over the time, and analyzes the reliability aspects of centralized and decentralized control architectures for microgrids. Degree of importance of a single controller in centralized and decentralized architectures is determined and validated by Markov Chain Models (MCM). Results confirm that higher reliability is achieved when true decentralization of control architecture is adopted. Challenges of implementing a true decentralized control architecture are discussed. Hardware-In-the-Loop simulation results for microgrid controller failure scenarios for both architectures are presented and discussed.
more »
« less
This content will become publicly available on April 9, 2026
Laboratory Testing of Resilience Effects of Water Microgrids for Sustainable Water Supply
Traditional centralized water systems are facing sustainability challenges due to climate and socioeconomic changes, extreme weather events, and aging infrastructure and their uncertainties. The energy sector has addressed similar challenges using the microgrid approach, which involves decentralized energy sources and their supply, improving system resilience and sustainable energy supply. This study investigated the resilience effects of water microgrids, which feature operational interactions between centralized and local systems for sustainable water supply. A lab-scale water distribution model was tested to demonstrate centralized, decentralized, and microgrid water systems under the disruption scenarios of pump shutdown, pump rate manipulation, and pipe leaks/bursts. The water microgrids integrate centralized and local systems’ operations, while the decentralized system operates independently. Then, functionality-based resilience and its attributes were evaluated for each disruption scenario. The results reveal that, overall, the microgrid configuration, with increased water supply redundancy and flexible operational adjustment based on system conditions, showed higher resilience, robustness, and recovery rate and a lower loss rate across disruption scenarios. The resilience effect of water microgrids was more evident with longer and more severe disruptions. Considering global challenges in water security under climate and socioeconomic changes, the findings suggest insights into a hybrid water system as a strategy to enhance resilience and water use efficiency and provide adaptive operations for sustainable water supply.
more »
« less
- Award ID(s):
- 2301663
- PAR ID:
- 10589571
- Editor(s):
- Angelakis, Andreas
- Publisher / Repository:
- MDPI (Multidisciplinary Digital Publishing Institute)
- Date Published:
- Journal Name:
- Sustainability
- Volume:
- 17
- Issue:
- 8
- ISSN:
- 2071-1050
- Page Range / eLocation ID:
- 3339
- Subject(s) / Keyword(s):
- hybrid water system decentralized water system water distribution system urban water infrastructure laboratory testbed alternative water resources water use efficiency water sustainability
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Centralized water infrastructure has, over the last century, brought safe and reliable drinking water to much of the world. But climate change, combined with aging and underfunded infrastructure, is increasingly testing the limits of—and reversing gains made by—this approach. To address these growing strains and gaps, we must assess and advance alternatives to centralized water provision and sanitation. The water literature is rife with examples of systems that are neither centralized nor networked, yet meet water needs of local communities in important ways, including: informal and hybrid water systems, decentralized water provision, community‐based water management, small drinking water systems, point‐of‐use treatment, small‐scale water vendors, and packaged water. Our work builds on these literatures by proposing a convergence approach that can integrate and explore the benefits and challenges of modular, adaptive, and decentralized (“MAD”) water provision and sanitation, often foregrounding important advances in engineering technology. We further provide frameworks to evaluate justice, economic feasibility, governance, human health, and environmental sustainability as key parameters of MAD water system performance. This article is categorized under:Engineering Water > Water, Health, and SanitationHuman Water > Water GovernanceEngineering Water > Sustainable Engineering of Watermore » « less
-
null (Ed.)Interconnected food, energy, and water (FEW) nexus systems face many challenges to support human well-being (HWB) and maintain resilience, especially in arid and semiarid regions like New Mexico (NM), United States (US). Insufficient FEW resources, unstable economic growth due to fluctuations in prices of crude oil and natural gas, inequitable education and employment, and climate change are some of these challenges. Enhancing the resilience of such coupled socio-environmental systems depends on the efficient use of resources, improved understanding of the interlinkages across FEW system components, and adopting adaptable alternative management strategies. The goal of this study was to develop a framework that can be used to enhance the resilience of these systems. An integrated food, energy, water, well-being, and resilience (FEW-WISE) framework was developed and introduced in this study. This framework consists mainly of five steps to qualitatively and quantitatively assess FEW system relationships, identify important external drivers, integrate FEW systems using system dynamics models, develop FEW and HWB performance indices, and develop a resilience monitoring criterion using a threshold-based approach that integrates these indices. The FEW-WISE framework can be used to evaluate and predict the dynamic behavior of FEW systems in response to environmental and socioeconomic changes using resilience indicators. In conclusion, the derived resilience index can be used to inform the decision-making processes to guide the development of alternative scenario-based management strategies to enhance the resilience of ecological and socioeconomic well-being of vulnerable regions like NM.more » « less
-
Abstract Urban agriculture has significant potential to address food security and nutritional challenges in cities. However, water access for urban food production poses a major challenge in the face of climate change and growing global freshwater scarcity, particularly in arid and semi‐arid areas. To support sustainable urban food production, this study focuses on a hybrid urban water system that integrates two important alternative water resources: a decentralized system of rainwater harvesting (RWH) and a centralized reclaimed water system. A new spatial optimization model is developed to identify the best investment strategy for deploying these two alternative water infrastructures to expand urban food production. The model is applied to the case study in Tucson, Arizona, a semi‐arid city in U.S. Southwest, to address food deserts in the region. Results show that 72%–96% of the investment is allocated to rainwater tanks deployment across all investment scenarios, with the proportion of investment in rainwater harvesting increasing as total investment rises. However, rainwater contributes only about 18%–27% of the total food production. The results of our case study indicate that expanding the reclaimed water network is more effective for urban food production and is also more cost‐efficient compared to implementing rainwater tanks. The new model can be applied to other regions, taking into account factors such as crop types, climate, soil conditions, infrastructure configurations, costs, and other site‐specific variables. The study provides valuable insights for planning urban water systems that incorporate alternative water sources under different investment scenarios.more » « less
-
null (Ed.)Most people in the world live in urban areas, and their high population densities, heavy reliance on external sources of food, energy, and water, and disproportionately large waste production result in severe and cumulative negative environmental effects. Integrated study of urban areas requires a system-of-systems analytical framework that includes modeling with social and biophysical data. We describe preliminary work toward an integrated urban food-energy-water systems (FEWS) analysis using co-simulation for assessment of current and future conditions, with an emphasis on local (urban and urban-adjacent) food production. We create a framework to enable simultaneous analyses of climate dynamics, changes in land cover, built forms, energy use, and environmental outcomes associated with a set of drivers of system change related to policy, crop management, technology, social interaction, and market forces affecting food production. The ultimate goal of our research program is to enhance understanding of the urban FEWS nexus so as to improve system function and management, increase resilience, and enhance sustainability. Our approach involves data-driven co-simulation to enable coupling of disparate food, energy and water simulation models across a range of spatial and temporal scales. When complete, these models will quantify energy use and water quality outcomes for current systems, and determine if undesirable environmental effects are decreased and local food supply is increased with different configurations of socioeconomic and biophysical factors in urban and urban-adjacent areas. The effort emphasizes use of open-source simulation models and expert knowledge to guide modeling for individual and combined systems in the urban FEWS nexus.more » « less
An official website of the United States government
