skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: ARCTIC COASTAL STORMS, UNIQUE IN CHARACTER AND IMPACT
Arctic storm surge events have a distinct character, and their impact on the coast is unique compared to a non-Arctic event. On the one hand, Arctic peak wind speeds rarely reach hurricane strength (74 mph, 64 knots or greater). And pressure drops associated with Arctic storms are small compared to ones in the tropics. More importantly, the impact of an atmospheric storm on the ocean and on the coast is entirely dependent on the season. If a large storm strikes during the winter or when the ocean is ice-covered, the storm will generate negligible waves and surge, and it will not generate erosion or coastal flooding. On the other hand, if a large storm strikes when the ocean is partially ice-covered (e.g., 50% covered), surge may be enhanced relative to an ice-free ocean, potentially leading to greater coastal flooding.  more » « less
Award ID(s):
1745508
PAR ID:
10410970
Author(s) / Creator(s):
; ;
Editor(s):
Ping Wang, Elizabeth Royer
Date Published:
Journal Name:
Coastal Sediments 2023
Page Range / eLocation ID:
2434 to 2461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Arctic storm surge events have a distinct character, and their impact on the coast is unique compared to a non-Arctic event. On the one hand, Arctic peak wind speeds rarely reach hurricane strength (74 mph, 64 knots or greater). And pressure drops associated with Arctic storms are small compared to ones in the tropics. More importantly, the impact of an atmospheric storm on the ocean and on the coast is entirely dependent on the season. If a large storm strikes during the winter or when the ocean is ice-covered, the storm will generate negligible waves and surge, and it will not generate erosion or coastal flooding. On the other hand, if a large storm strikes when the ocean is partially ice-covered (e.g., 50% covered), surge may be enhanced relative to an ice-free ocean, potentially leading to greater coastal flooding. 
    more » « less
  2. The intensification of coastal storms, combined with declining sea ice cover, sea level rise, and changes to permafrost conditions, will likely increase the incidence and impact of storm surge flooding in Arctic coastal environments. In coastal communities accurate information on the exposure of infrastructure can make an important contribution to adaptation planning. In this study, we use high resolution elevation data from airborne LiDAR to generate storm flooding scenarios for three coastal communities (Utqiag_ vik, Wainwright, and Kaktovik) in northern Alaska. To estimate the potential for damage to infrastructure caused by flooding for each community, we generated data on replacement costs and used it to estimate the financial impact of 24 storm flooding scenarios of varying intensities. This analysis shows that all three communities are exposed to storm surges, but highlights the fact that infrastructure in Utqiag_ vik (the administrative center of the North Slope Borough) is significantly more exposed than buildings in Wainwright and Kaktovik. Our findings show that flooding scenarios can complement information gained from past events and help to inform local-decision making. 
    more » « less
  3. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences. 
    more » « less
  4. Abstract. To improve our understanding of the influence of tropicalcyclones (TCs) on coastal flooding, the relationships between storm surgeand TC characteristics are analyzed for 12 sites along the east coast of theUnited States. This analysis offers a unique perspective by first examiningthe relationship between the characteristics of TCs and their resultingstorm surge and then determining the probabilities of storm surge associatedwith TCs based on exceeding certain TC characteristic thresholds. Usingobservational data, the statistical dependencies of storm surge on TCs areexamined for these characteristics: TC proximity, intensity, path angle, andpropagation speed, by applying both exponential and linear fits to the data.At each tide gauge along the east coast of the United States, storm surge isinfluenced differently by these TC characteristics, with some locations morestrongly influenced by TC intensity and others by TC proximity. Thecorrelation for individual and combined TC characteristics increases whenconditional sorting is applied to isolate strong TCs close to a location.The probabilities of TCs generating surge exceeding specific return levels(RLs) are then analyzed for TCs passing within 500 km of a tide gauge, wherebetween 6 % and 28 % of TCs were found to cause surge exceeding the1-year RL. If only the closest and strongest TCs are considered, thepercentage of TCs that generate surge exceeding the 1-year RL is between 30 % and 70 % at sites north of Sewell's Point, VA, and over 65 % atalmost all sites south of Charleston, SC. When examining storm surgeproduced by TCs, single-variable regression provides a good fit, whilemulti-variable regression improves the fit, particularly when focusing on TCproximity and intensity, which are, probabilistically, the two mostinfluential TC characteristics on storm surge. 
    more » « less
  5. Low-lying coastal cities across the world are vulnerable to the combined impact of rainfall and storm tide. However, existing approaches lack the ability to model the combined effect of these flood mechanisms, especially under climate change and sea level rise (SLR). Thus, to increase flood resilience of coastal cities, modeling techniques to improve the understanding and prediction of the combined effect of these flood hazards are critical. To address this need, this study presents a modeling system for assessing the combined flood impact on coastal cities under selected future climate scenarios that leverages ocean modeling with land surface modeling capable of resolving urban drainage infrastructure within the city. The modeling approach is demonstrated in quantifying the impact of possible future climate scenarios on transportation infrastructure within Norfolk, Virginia, USA. A series of combined storm events are modeled for current (2020) and projected future (2070) climate scenarios. The results show that pluvial flooding causes a larger interruption to the transportation network compared to tidal flooding under current climate conditions. By 2070, however, tidal flooding will be the dominant flooding mechanism with even nuisance flooding expected to happen daily due to SLR. In 2070, nuisance flooding is expected to cause a 4.6% total link close time (TLC), which is more than two times that of a 50-year storm surge (1.8% TLC) in 2020. The coupled flood model was compared with a widely used but physically simplistic bathtub method to assess the difference resulting from the more complex modeling presented in this study. The results show that the bathtub method overestimated the flooded area near the shoreline by 9.5% and 3.1% for a 10-year storm surge event in 2020 and 2070, respectively, but underestimated the flooded area in the inland region by 9.0% and 4.0% for the same events. The findings demonstrate the benefit of sophisticated modeling methods compared to more simplistic bathtub approaches, in climate adaptive planning and policy in coastal communities. 
    more » « less