skip to main content


Title: Arctic Coastal Storms, Unique in Character and Impact
Arctic storm surge events have a distinct character, and their impact on the coast is unique compared to a non-Arctic event. On the one hand, Arctic peak wind speeds rarely reach hurricane strength (74 mph, 64 knots or greater). And pressure drops associated with Arctic storms are small compared to ones in the tropics. More importantly, the impact of an atmospheric storm on the ocean and on the coast is entirely dependent on the season. If a large storm strikes during the winter or when the ocean is ice-covered, the storm will generate negligible waves and surge, and it will not generate erosion or coastal flooding. On the other hand, if a large storm strikes when the ocean is partially ice-covered (e.g., 50% covered), surge may be enhanced relative to an ice-free ocean, potentially leading to greater coastal flooding.  more » « less
Award ID(s):
1927785
NSF-PAR ID:
10416456
Author(s) / Creator(s):
Date Published:
Journal Name:
Coastal Sediments 2023: The Proceedings of the Coastal Sediments
Page Range / eLocation ID:
2434-2461
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ping Wang, Elizabeth Royer (Ed.)
    Arctic storm surge events have a distinct character, and their impact on the coast is unique compared to a non-Arctic event. On the one hand, Arctic peak wind speeds rarely reach hurricane strength (74 mph, 64 knots or greater). And pressure drops associated with Arctic storms are small compared to ones in the tropics. More importantly, the impact of an atmospheric storm on the ocean and on the coast is entirely dependent on the season. If a large storm strikes during the winter or when the ocean is ice-covered, the storm will generate negligible waves and surge, and it will not generate erosion or coastal flooding. On the other hand, if a large storm strikes when the ocean is partially ice-covered (e.g., 50% covered), surge may be enhanced relative to an ice-free ocean, potentially leading to greater coastal flooding. 
    more » « less
  2. The intensification of coastal storms, combined with declining sea ice cover, sea level rise, and changes to permafrost conditions, will likely increase the incidence and impact of storm surge flooding in Arctic coastal environments. In coastal communities accurate information on the exposure of infrastructure can make an important contribution to adaptation planning. In this study, we use high resolution elevation data from airborne LiDAR to generate storm flooding scenarios for three coastal communities (Utqiag_ vik, Wainwright, and Kaktovik) in northern Alaska. To estimate the potential for damage to infrastructure caused by flooding for each community, we generated data on replacement costs and used it to estimate the financial impact of 24 storm flooding scenarios of varying intensities. This analysis shows that all three communities are exposed to storm surges, but highlights the fact that infrastructure in Utqiag_ vik (the administrative center of the North Slope Borough) is significantly more exposed than buildings in Wainwright and Kaktovik. Our findings show that flooding scenarios can complement information gained from past events and help to inform local-decision making. 
    more » « less
  3. Abstract. The interaction between storm surge and concurrent precipitation is poorly understood in many coastal regions. This paper investigates the potential compound effects from these two flooding drivers along the coast of China for the first time by using the most comprehensive records of storm surge and precipitation. Statistically significant dependence between flooding drivers exists at the majority of locations that are analysed, but the strength of the correlation varies spatially and temporally and depending on how extreme events are defined. In general, we find higher dependence at the south-eastern tide gauges (TGs) (latitude < 30∘ N) compared to the northern TGs. Seasonal variations in the dependence are also evident. Overall there are more sites with significant dependence in the tropical cyclone (TC) season, especially in the summer. Accounting for past sea level rise further increases the dependence between flooding drivers, and future sea level rise will hence likely lead to an increase in the frequency of compound events. We also find notable differences in the meteorological patterns associated with events where both drivers are extreme versus events where only one driver is extreme. Events with both extreme drivers at south-eastern TG sites are caused by low-pressure systems with similar characteristics across locations, including high precipitable water content (PWC) and strong winds that generate high storm surge. Based on historical disaster damages records of Hong Kong, events with both extreme drivers account for the vast majority of damages and casualties, compared to univariate flooding events, where only one flooding driver occurred. Given the large coastal population and low capacity of drainage systems in many Chinese urban coastal areas, these findings highlight the necessity to incorporate compound flooding and its potential changes in a warming climate into risk assessments, urban planning, and the design of coastal infrastructure and flood defences. 
    more » « less
  4. Coastal communities are vulnerable to sea-level rise and hurricane-induced flooding. Our ability to assess flooding risk at coastal locations is restricted by the short observational record and limited knowledge on storm surge generation during hurricanes of different strength, size and orientation. Here, we present a transect of sediment cores collected from a blue hole near Middle Caicos in the Turks & Caicos Islands. Storm deposits found across cores in the transect record the passage of hurricanes passing to the south of Middle Caicos over the past 1500 years including Hurricane Irma in 2017. The record indicates historically unprecedented multi-decadal periods of elevated storm strikes on the island. We add this new reconstruction to a compilation of near-annually resolved paleohurricane records of the past millennium in The Bahamas. This compilation indicates increased storm activity in The Bahamas from 650 to 800 CE, 930 to 1040 CE, and 1400 to 1800 CE. Taken together with compilations of published paleohurricane records from New England and the Gulf Coast of Florida, we observe periods of elevated hurricane activity in all three spatially disparate regions over the past millennium and periods when New England and the Bahama Archipelago are active while the Gulf Coast of Florida is not. We argue that both regional-scale changes in vertical wind shear patterns and shifting storm tracks may explain the discrepancies we observe between different regions of the North Atlantic. This research informs how hurricane frequency has changed over the past 1500 years specifically in the Turks & Caicos Islands and regionally along the Bahama Archipelago. 
    more » « less
  5. Abstract. To improve our understanding of the influence of tropicalcyclones (TCs) on coastal flooding, the relationships between storm surgeand TC characteristics are analyzed for 12 sites along the east coast of theUnited States. This analysis offers a unique perspective by first examiningthe relationship between the characteristics of TCs and their resultingstorm surge and then determining the probabilities of storm surge associatedwith TCs based on exceeding certain TC characteristic thresholds. Usingobservational data, the statistical dependencies of storm surge on TCs areexamined for these characteristics: TC proximity, intensity, path angle, andpropagation speed, by applying both exponential and linear fits to the data.At each tide gauge along the east coast of the United States, storm surge isinfluenced differently by these TC characteristics, with some locations morestrongly influenced by TC intensity and others by TC proximity. Thecorrelation for individual and combined TC characteristics increases whenconditional sorting is applied to isolate strong TCs close to a location.The probabilities of TCs generating surge exceeding specific return levels(RLs) are then analyzed for TCs passing within 500 km of a tide gauge, wherebetween 6 % and 28 % of TCs were found to cause surge exceeding the1-year RL. If only the closest and strongest TCs are considered, thepercentage of TCs that generate surge exceeding the 1-year RL is between 30 % and 70 % at sites north of Sewell's Point, VA, and over 65 % atalmost all sites south of Charleston, SC. When examining storm surgeproduced by TCs, single-variable regression provides a good fit, whilemulti-variable regression improves the fit, particularly when focusing on TCproximity and intensity, which are, probabilistically, the two mostinfluential TC characteristics on storm surge. 
    more » « less