skip to main content


Title: Study of Vertical Ga 2 O 3 FinFET Short Circuit Ruggedness using Robust TCAD Simulation
In this paper, the short circuit ruggedness of Gallium Oxide (Ga 2 O 3 ) vertical FinFET is studied using Technology Computer-Aided-Design (TCAD) simulations. Ga 2 O 3 is an emerging ultra-wide bandgap material and Ga 2 O 3 vertical FinFET can achieve the normally-off operation for high voltage applications. Ga 2 O 3 has a relatively low thermal conductivity and, thus, it is critical to explore the design space of Ga 2 O 3 vertical FinFETs to achieve an acceptable short-circuit capability for power applications. In this study, appropriate TCAD models and parameters calibrated to experimental data are used. For the first time, the breakdown voltage simulation accuracy of Ga 2 O 3 vertical FinFETs is studied systematically. It is found that a background carrier generation rate between 10 5 cm −3 s −1 and 10 12 cm −3 s −1 is required in simulation to obtain correct results. The calibrated and robust setup is then used to study the short circuit withstand time (SCWT) of an 800 V-rated Ga 2 O 3 vertical FinFET with different inter-fin architectures. It is found that, due to the high thermal resistance in Ga 2 O 3 , to achieve an SCWT >1 μ s, low gate overdrive is needed which increases R on,sp by 66% and that Ga 2 O 3 might melt before the occurrence of thermal runaway. These results provide important guidance for developing rugged Ga 2 O 3 power transistors.  more » « less
Award ID(s):
2134374
NSF-PAR ID:
10411003
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ECS Journal of Solid State Science and Technology
Volume:
11
Issue:
11
ISSN:
2162-8769
Page Range / eLocation ID:
115001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. β-Ga2O3is an emerging material and has the potential to revolutionize power electronics due to its ultra-wide-bandgap (UWBG) and lower native substrate cost compared to Silicon Carbide and Gallium Nitride. Sinceβ-Ga2O3technology is still not mature, experimental study ofβ-Ga2O3is difficult and expensive. Technology-Computer-Aided Design (TCAD) is thus a cost-effective way to study the potentials and limitations ofβ-Ga2O3devices. In this paper, TCAD parameters calibrated to experiments are presented. They are used to perform the simulations in heterojunction p-NiO/n-Ga2O3diode, Schottky diode, and normally-off Ga2O3vertical FinFET. Besides the current-voltage (I-V) simulations, breakdown, capacitance-voltage (C-V), and short-circuit ruggedness simulations with robust setups are discussed. TCAD Sentaurus is used in the simulations but the methodologies can be applied in other simulators easily. This paves the road to performing a holistic study ofβ-Ga2O3devices using TCAD.

     
    more » « less
  2. Vertical heterojunction NiO/β n-Ga 2 O/n + Ga 2 O 3 rectifiers employing NiO layer extension beyond the rectifying contact for edge termination exhibit breakdown voltages (V B ) up to 4.7 kV with a power figure-of-merits, V B 2 /R ON of 2 GW·cm −2 , where R ON is the on-state resistance (11.3 mΩ cm 2 ). Conventional rectifiers fabricated on the same wafers without NiO showed V B values of 840 V and a power figure-of-merit of 0.11 GW cm −2 . Optimization of the design of the two-layer NiO doping and thickness and also the extension beyond the rectifying contact by TCAD showed that the peak electric field at the edge of the rectifying contact could be significantly reduced. The leakage current density before breakdown was 144 mA/cm 2 , the forward current density was 0.8 kA/cm 2 at 12 V, and the turn-on voltage was in the range of 2.2–2.4 V compared to 0.8 V without NiO. Transmission electron microscopy showed sharp interfaces between NiO and epitaxial Ga 2 O 3 and a small amount of disorder from the sputtering process. 
    more » « less
  3. In this work, β-Ga 2 O 3 fin field-effect transistors (FinFETs) with metalorganic chemical vapor deposition grown epitaxial Si-doped channel layer on (010) semi-insulating β-Ga 2 O 3 substrates are demonstrated. β-Ga 2 O 3 fin channels with smooth sidewalls are produced by the plasma-free metal-assisted chemical etching (MacEtch) method. A specific on-resistance (R on,sp ) of 6.5 mΩ·cm 2 and a 370 V breakdown voltage are achieved. In addition, these MacEtch-formed FinFETs demonstrate DC transfer characteristics with near zero (9.7 mV) hysteresis. The effect of channel orientation on threshold voltage, subthreshold swing, hysteresis, and breakdown voltages is also characterized. The FinFET with channel perpendicular to the [102] direction is found to exhibit the lowest subthreshold swing and hysteresis. 
    more » « less
  4. Large area (1 mm2) vertical NiO/βn-Ga2O/n+Ga2O3heterojunction rectifiers are demonstrated with simultaneous high breakdown voltage and large conducting currents. The devices showed breakdown voltages (VB) of 3.6 kV for a drift layer doping of 8 × 1015cm−3, with 4.8 A forward current. This performance is higher than the unipolar 1D limit for GaN, showing the promise ofβ-Ga2O3for future generations of high-power rectification devices. The breakdown voltage was a strong function of drift region carrier concentration, with VBdropping to 1.76 kV for epi layer doping of 2 × 1016cm−3. The power figure-of-merit, VB2/RON, was 8.64 GW·cm−2, where RONis the on-state resistance (1.5 mΩ cm2). The on-off ratio switching from 12 to 0 V was 2.8 × 1013, while it was 2 × 1012switching from 100 V. The turn-on voltage was 1.8 V. The reverse recovery time was 42 ns, with a reverse recovery current of 34 mA.

     
    more » « less
  5. NiO/β-Ga 2 O 3 vertical rectifiers exhibit near-temperature-independent breakdown voltages ( V B ) of >8 kV to 600 K. For 100 μm diameter devices, the power figure of merit ( V B ) 2 / R ON , where R ON is the on-state resistance, was 9.1 GW cm −2 at 300 K and 3.9 GW cm −2 at 600 K. By sharp contrast, Schottky rectifiers fabricated on the same wafers show V B of ∼1100 V at 300 K, with a negative temperature coefficient of breakdown of 2 V K −1 . The corresponding figures of merit for Schottky rectifiers were 0.22 GW cm −2 at 300 K and 0.59 MW cm −2 at 600 K. The on–off ratio remained >10 10 up to 600 K for heterojunction rectifiers but was 3 orders of magnitude lower over the entire temperature range for Schottky rectifiers. The power figure of merit is higher by a factor of approximately 6 than the 1-D unipolar limit of SiC. The reverse recovery times were ∼26 ± 2 ns for both types of devices and were independent of temperature. We also fabricated large area, 1 mm 2 rectifiers. These exhibited V B of 4 kV at 300 K and 3.6 kV at 600 K. The results show the promise of using this transparent oxide heterojunction for high temperature, high voltage applications. 
    more » « less