Abstract Martensitic transformation (MT), magnetic properties, and magnetocaloric effect (MCE) in Heusler-type Ni 47 Mn 40 Sn 13− x Cd x ( x = 0, 0.75, 1, 1.25 at. %) metamagnetic shape memory alloys (MetaMSMAs) are investigated, both experimentally and theoretically, as a function of doping with Cd. Ab-initio computations reveal that the ferromagnetic (FM) configuration is energetically more favorable in the cubic phase than the antiferromagnetic (AFM) state in undoped and doped alloys as well. Moreover, it is revealed that the alloys in the ground state exhibit a tetragonal structure confirming the existence of MT, in agreement with the experiments. It was indicated, both in theory and practice, that a reduction of the unit cell volume and an increase of the MT temperature as a function of the Cd doping. Indirect estimations of MCE in the vicinity of MT were carried out by using thermomagnetization curves measured under different magnetic fields up to 5 T. The results demonstrated that the doped alloys exhibit enhanced values of the inverse MCE comparable with those of Ni-Mn-based MetaMSMAs. Maximum magnetic entropy change in a field change of 2 T increases from 3.0 J .k g − 1 K − 1 for the undoped alloy to 3.4 and 5.0 J .k g − 1 K − 1 for the alloys doped with 0.75 and 1 at.% of Cd, respectively. The inverse and conventional MCE were explored by direct measurements of the adiabatic temperature change under the magnetic field change of 1.96 T. The Cd doping increased the maximum of inverse MCE by nearly 78% from 0.9 K to 1.6 K for the undoped and doped alloys, respectively. The results depicted that Cd doping can effectively tailor the structural, magnetic, and MCE properties of the Ni–Mn–Sn MetaMSMAs.
more »
« less
Synthesis, crystal and electronic structure of BaLixCd13–x (x ≈ 2)
A new ternary phase has been synthesized and structurally characterized. BaLi x Cd 13– x ( x ≈ 2) adopts the cubic NaZn 13 structure type (space group Fm 3 ¯ c , Pearson symbol cF 112) with unit cell parameter a = 13.5548 (10) Å. Structure refinements from single-crystal X-ray diffraction data demonstrate that the Li atoms are exclusively found at the centers of the Cd 12 -icosahedra. Since a cubic BaCd 13 phase does not exist, and the tetragonal BaCd 11 is the most Cd-rich phase in the Ba–Cd system, BaLi x Cd 13– x ( x ≈ 2) has to be considered as a true ternary compound. As opposed to the typical electron count of ca. 27 e -per formula unit for many known compounds with the NaZn 13 structure type, BaLi x Cd 13– x ( x ≈ 2) only has ca. 26 e -, suggesting that both electronic and geometric factors are at play. Finally, the bonding characteristics of the cubic BaLi x Cd 13– x ( x ≈ 2) and tetragonal BaCd 11 are investigated using the TB-LMTO-ASA method, showing metallic-like behavior.
more »
« less
- Award ID(s):
- 2004579
- PAR ID:
- 10411120
- Date Published:
- Journal Name:
- Frontiers in Chemistry
- Volume:
- 10
- ISSN:
- 2296-2646
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
This study investigates the facile hydride synthesis method guided by theoretical predictions to explore the K–T–Bi (T = Zn, Cd) phase spaces. Using an adaptive genetic algorithm (AGA) and density functional theory (DFT), candidate compositions are identified for experimental validation via a facile hydrides route, permitting experimental screening of K–Zn–Bi and “empty” K–Cd–Bi systems. The previously reported KZnBi and KZn2Bi2are synthesized alongside newly discovered KCdBi and KCd2Bi2. While the AGA and DFT predict the stability of these compounds, structural predictions align with the experiment only for KZnBi and KZn2Bi2. Single‐crystal X‐ray structure refinements confirm that KZnBi and KZn2Bi2adopt the hexagonal ZrBeSi‐ and tetragonal ThCr2Si2‐structure types, respectively. KCdBi has tetragonal PbClF‐structure type and KCd2Bi2belongs to the ThCr2Si2‐structure type. A trend based on the ratio of the metal ionic radii allows to rationalize variation in the structure types within theATBi family (A = Li–Cs), correctly identifying KCdBi as isostructural to NaZnBi. Thermal stability studied by high‐temperature powder X‐ray diffraction reveals that Zn‐containing compounds melt at higher temperatures (821 K for KZn2Bi2) than Cd‐containing KCd2Bi2(635 K). This study highlights the efficacy of combining rapid synthesis techniques with predictive modeling, though structural predictions show some limitations in accuracy.more » « less
-
Abstract Next‐generation electronics and energy technologies can now be developed as a result of the design, discovery, and development of novel, environmental friendly lead (Pb)‐free ferroelectric materials with improved characteristics and performance. However, there have only been a few reports of such complex materials’ design with multi‐phase interfacial chemistry, which can facilitate enhanced properties and performance. In this context, herein, novel lead‐free piezoelectric materials (1‐x)Ba0.95Ca0.05Ti0.95Zr0.05O3‐(x)Ba0.95Ca0.05Ti0.95Sn0.05O3, are reported, which are represented as (1‐x)BCZT‐(x)BCST, with demonstrated excellent properties and energy harvesting performance. The (1‐x)BCZT‐(x)BCST materials are synthesized by high‐temperature solid‐state ceramic reaction method by varyingxin the full range (x= 0.00–1.00). In‐depth exploration research is performed on the structural, dielectric, ferroelectric, and electro‐mechanical properties of (1‐x)BCZT‐(x)BCST ceramics. The formation of perovskite structure for all ceramics without the presence of any impurity phases is confirmed by X‐ray diffraction (XRD) analyses, which also reveals that the Ca2+, Zr4+, and Sn4+are well dispersed within the BaTiO3lattice. For all (1‐x)BCZT‐(x)BCST ceramics, thorough investigation of phase formation and phase‐stability using XRD, Rietveld refinement, Raman spectroscopy, high‐resolution transmission electron microscopy (HRTEM), and temperature‐dependent dielectric measurements provide conclusive evidence for the coexistence of orthorhombic + tetragonal (Amm2+P4mm) phases at room temperature. The steady transition ofAmm2crystal symmetry toP4mmcrystal symmetry with increasingxcontent is also demonstrated by Rietveld refinement data and related analyses. The phase transition temperatures, rhombohedral‐orthorhombic (TR‐O), orthorhombic‐ tetragonal (TO‐T), and tetragonal‐cubic (TC), gradually shift toward lower temperature with increasingxcontent. For (1‐x)BCZT‐(x)BCST ceramics, significantly improved dielectric and ferroelectric properties are observed, including relatively high dielectric constantεr≈ 1900–3300 (near room temperature),εr≈ 8800–12 900 (near Curie temperature), dielectric loss, tanδ≈ 0.01–0.02, remanent polarizationPr≈ 9.4–14 µC cm−2, coercive electric fieldEc≈ 2.5–3.6 kV cm−1. Further, high electric field‐induced strainS≈ 0.12–0.175%, piezoelectric charge coefficientd33≈ 296–360 pC N−1, converse piezoelectric coefficient ≈ 240–340 pm V−1, planar electromechanical coupling coefficientkp≈ 0.34–0.45, and electrostrictive coefficient (Q33)avg≈ 0.026–0.038 m4C−2are attained. Output performance with respect to mechanical energy demonstrates that the (0.6)BCZT‐(0.4)BCST composition (x= 0.4) displays better efficiency for generating electrical energy and, thus, the synthesized lead‐free piezoelectric (1‐x)BCZT‐(x)BCST samples are suitable for energy harvesting applications. The results and analyses point to the outcome that the (1‐x)BCZT‐(x)BCST ceramics as a potentially strong contender within the family of Pb‐free piezoelectric materials for future electronics and energy harvesting device technologies.more » « less
-
Thermoelectric materials can convert heat into electricity. They are used to generate electricity when other power sources are not available or to increase energy efficiency by recycling waste heat. The Yb 21 Mn 4 Sb 18 phase was previously shown to have good thermoelectric performance due to its large Seebeck coefficient (∼290 μV K −1 ) and low thermal conductivity (0.4 W m −1 K −1 ). These characteristics stem respectively from the unique [Mn 4 Sb 10 ] 22− subunit and the large unit cell/site disorder inherent in this phase. The solid solutions, Yb 21 Mn 4− x Cd x Sb 18 ( x = 0, 0.5, 1.0, 1.5) and Yb 21− y Ca y Mn 4 Sb 18 ( y = 3, 6, 9, 10.5) have been prepared, their structures characterized and thermoelectric properties from room temperature to 800 K measured. A detailed look into the structural disorder for the Cd and Ca solid solutions was performed using synchrotron powder X-ray diffraction and pair distribution function methods and shows that these are highly disordered structures. The substitution of Cd gives rise to more metallic behavior whereas Ca substitution results in high resistivity. As both Cd and Ca are isoelectronic substitutions, the changes in properties are attributed to changes in the electronic structure. Both solid solutions show that the thermal conductivities remain extremely low (∼0.4 W m −1 K −1 ) and that the Seebeck coefficients remain high (>200 μV K −1 ). The temperature dependence of the carrier mobility with increased Ca substitution, changing from approximately T −1 to T −0.5 , suggests that another scattering mechanism is being introduced. As the bonding changes from polar covalent with Yb to ionic for Ca, polar optical phonon scattering becomes the dominant mechanism. Experimental studies of the Cd solid solutions result in a max zT of ∼1 at 800 K and, more importantly for application purposes, a ZT avg ∼ 0.6 from 300 K to 800 K.more » « less
-
The information content of crystalline materials becomes astronomical when collective electronic behavior and their fluctuations are taken into account. In the past decade, improvements in source brightness and detector technology at modern X-ray facilities have allowed a dramatically increased fraction of this information to be captured. Now, the primary challenge is to understand and discover scientific principles from big datasets when a comprehensive analysis is beyond human reach. We report the development of an unsupervised machine learning approach, X-ray diffraction (XRD) temperature clustering (X-TEC), that can automatically extract charge density wave order parameters and detect intraunit cell ordering and its fluctuations from a series of high-volume X-ray diffraction measurements taken at multiple temperatures. We benchmark X-TEC with diffraction data on a quasi-skutterudite family of materials, (Ca x Sr 1 − x ) 3 Rh 4 Sn 13 , where a quantum critical point is observed as a function of Ca concentration. We apply X-TEC to XRD data on the pyrochlore metal, Cd 2 Re 2 O 7 , to investigate its two much-debated structural phase transitions and uncover the Goldstone mode accompanying them. We demonstrate how unprecedented atomic-scale knowledge can be gained when human researchers connect the X-TEC results to physical principles. Specifically, we extract from the X-TEC–revealed selection rules that the Cd and Re displacements are approximately equal in amplitude but out of phase. This discovery reveals a previously unknown involvement of 5 d 2 Re, supporting the idea of an electronic origin to the structural order. Our approach can radically transform XRD experiments by allowing in operando data analysis and enabling researchers to refine experiments by discovering interesting regions of phase space on the fly.more » « less
An official website of the United States government

