High-entropy alloys (HEAs) with significant magnetocaloric effects (MCEs) have attracted widespread attention due to their potential magnetic refrigeration applications over a much more comprehensive temperature range with large refrigerant capacity (RC). However, most of them are metallic glasses (MGs) with problems of limited size, resulting in the difficulty of further applications. Therefore, research on HEAs with crystalline structures and giant MCE is urgently needed. In this paper, GdErHoCoM (M = Cr and Mn) rare-earth HEA ingots with orthorhombic structures are developed, and their magnetic behavior and MCE are studied in detail. Phase investigations find that the main phase of GdErHoCoM ingots is probably (GdErHo)Co with an orthorhombic Ho3Co-type structure of a space group of Pnma. The secondary phases in GdErHoCoCr and GdErHoCoMn are body-center-cubic Cr and Mn-rich HoCo2-type phases, respectively. Magnetic investigations reveal that both ingots undergo a first-order magnetic phase transition below their respective Neel temperatures. Above their respective Neel temperatures, a second-order transition is observed. The Neel temperatures are 40 and 56 K for GdErHoCoCr and GdErHoCoMn, respectively. Additionally, the GdErHoCoCr and GdErHoCoMn ingots exhibit maximum magnetic entropy changes and RC values of 12.29 J/kg/K and 746 J/kg and 10.13 J/kg/K and 606 J/kg, respectively, under a magnetic field of 5 T. The ingots GdErHoCoM (M = Cr and Mn) show excellent MEC properties and can be manufactured easily, making them promising for magnetic refrigerant applications.
more »
« less
Cd-doping effects in Ni–Mn–Sn: experiment and ab-initio study
Abstract Martensitic transformation (MT), magnetic properties, and magnetocaloric effect (MCE) in Heusler-type Ni 47 Mn 40 Sn 13− x Cd x ( x = 0, 0.75, 1, 1.25 at. %) metamagnetic shape memory alloys (MetaMSMAs) are investigated, both experimentally and theoretically, as a function of doping with Cd. Ab-initio computations reveal that the ferromagnetic (FM) configuration is energetically more favorable in the cubic phase than the antiferromagnetic (AFM) state in undoped and doped alloys as well. Moreover, it is revealed that the alloys in the ground state exhibit a tetragonal structure confirming the existence of MT, in agreement with the experiments. It was indicated, both in theory and practice, that a reduction of the unit cell volume and an increase of the MT temperature as a function of the Cd doping. Indirect estimations of MCE in the vicinity of MT were carried out by using thermomagnetization curves measured under different magnetic fields up to 5 T. The results demonstrated that the doped alloys exhibit enhanced values of the inverse MCE comparable with those of Ni-Mn-based MetaMSMAs. Maximum magnetic entropy change in a field change of 2 T increases from 3.0 J .k g − 1 K − 1 for the undoped alloy to 3.4 and 5.0 J .k g − 1 K − 1 for the alloys doped with 0.75 and 1 at.% of Cd, respectively. The inverse and conventional MCE were explored by direct measurements of the adiabatic temperature change under the magnetic field change of 1.96 T. The Cd doping increased the maximum of inverse MCE by nearly 78% from 0.9 K to 1.6 K for the undoped and doped alloys, respectively. The results depicted that Cd doping can effectively tailor the structural, magnetic, and MCE properties of the Ni–Mn–Sn MetaMSMAs.
more »
« less
- Award ID(s):
- 2110603
- PAR ID:
- 10374295
- Date Published:
- Journal Name:
- Journal of Physics D: Applied Physics
- Volume:
- 55
- Issue:
- 25
- ISSN:
- 0022-3727
- Page Range / eLocation ID:
- 255001
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present a detailed x-ray magnetic circular dichroism (XMCD) study of the magnetic properties of Gd-doped EuO thin films, synthesized via molecular-beam epitaxy with Gd doping levels up to over 12%. The impact of Gd doping on the electronic and magnetic behavior of EuO is studied using XMCD and magnetometry. Gd doping significantly enhances the Curie temperature ( ) from 69 K in undoped EuO to over 120 K, driven by increased carrier density, while preserving the high quality of the single-crystalline films. At higher doping levels, a plateau in is observed, which is attributed to the formation of Eu-Gd nearest-neighbor pairs that limit dopant activation. We also observe a distinctive “double-dome” structure in the temperature-dependent magnetization, which we attribute to both the ferromagnetic ordering of Eu moments at lower temperatures and the influence of conduction electrons via exchange interactions at higher temperatures. These findings provide key insights into the mechanisms of carrier-induced magnetic transitions. Published by the American Physical Society2025more » « less
-
The effects of doping, hydrostatic pressure, and thermal quenching on the phase transitions and magnetocaloric properties of the Mn1−xCoxNiGe system have been investigated. Cobalt doping on the Mn site shifted the martensitic structural transition toward lower temperature until it was ultimately absent, leaving only a magnetic transition from a ferromagnetic (FM) to a paramagnetic (PM) state in the high-temperature hexagonal phase. Co-occurrence of the magnetic and structural transitions to form a first-order magnetostructural transition (MST) from the FM orthorhombic to the PM hexagonal phase was observed in samples with 0.05 < x < 0.20. An additional antiferromagnetic–ferromagnetic-like transition was observed in the martensite phase for 0.05 < x < 0.10, which gradually vanished with increasing Co concentration (x > 0.10) or magnetic field (H > 0.5 T). The application of external hydrostatic pressure shifted the structural transition to lower temperature until an MST was formed in samples with x = 0.03 and 0.05, inducing large magnetic entropy changes up to −80.3 J kg−1 K−1 (x = 0.03) for a 7-T field change under 10.6-kbar pressure. Similar to the effects of the application of hydrostatic pressure, an MST was formed near room temperature in the sample with x = 0.03 by annealing at high temperature (1200 °C) followed by quenching, resulting in a large magnetic entropy change of −56.2 J kg−1 K−1. These experimental results show that the application of pressure and thermal quenching, in addition to compositional variations, are effective methods to create magnetostructural transitions in the MnNiGe system, resulting in large magnetocaloric effects.more » « less
-
We report results of large-scale ground-state density matrix renormalization group (DMRG) calculations on t- -J cylinders with circumferences 6 and 8. We determine a rough phase diagram that appears to approximate the two-dimensional (2D) system. While for many properties, positive and negative values ( ) appear to correspond to electron- and hole-doped cuprate systems, respectively, the behavior of superconductivity itself shows an inconsistency between the model and the materials. The (hole-doped) region shows antiferromagnetism limited to very low doping, stripes more generally, and the familiar Fermi surface of the hole-doped cuprates. However, we find strongly suppresses superconductivity. The (electron-doped) region shows the expected circular Fermi pocket of holes around the point and a broad low-doped region of coexisting antiferromagnetism and d-wave pairing with a triplet p component at wavevector induced by the antiferromagnetism and d-wave pairing. The pairing for the electron low-doped system with is strong and unambiguous in the DMRG simulations. At larger doping another broad region with stripes in addition to weaker d-wave pairing and striped p-wave pairing appears. In a small doping region near for , we find an unconventional type of stripe involving unpaired holes located predominantly on chains spaced three lattice spacings apart. The undoped two-leg ladder regions in between mimic the short-ranged spin correlations seen in two-leg Heisenberg ladders.more » « less
-
First-principles calculations were performed to calculate the electronic structures of low temperature phase (LTP) MnBi (Mn50Bi50) and substitutionally and interstitially Sn-doped MnBi [Mn50Bi25Sn25, (Mn0.5Bi0.5)66.7Sn33.3]. Brillouin function predicts the temperature dependence of saturation magnetization M(T). Sn substitution for Bi in MnBi (Mn50Bi25Sn25) changes the magnetocrystalline anisotropy constant (Ku) from −0.202 MJ/m3 (the in-plane magnetization) for LTP MnBi to 1.711 MJ/m3 (the out-of-plane magnetization). In comparison, the Ku remains negative but slightly decreases to −0.043 MJ/m3 when Sn is interstitially doped in MnBi [(Mn0.5Bi0.5)66.7Sn33.3]. The Curie temperature (TC) decreases from 716 K for LTP Mn50Bi50 to 445 K for Mn50Bi25Sn25 and 285 K for (Mn0.5Bi0.5)66.7Sn33.3. Mn50Bi25Sn25 has a lower magnetic moment of 5.034 μB/f.u. but a higher saturation magnetization of 64.2 emu/g than (Mn0.5Bi0.5)66.7Sn33.3 with a magnetic moment of 6.609 μB/f.u. and a saturation magnetization of 48.2 emu/g because the weight and volume of the substitutionally Sn-doped MnBi are smaller than the interstitially Sn-doped MnBi. The low Curie temperature and magnetization for Sn-doped MnBi are attributed to the high concentration of Sn. Thus, future study needs to focus on low Sn-concentrated MnBi.more » « less