Abstract We consider information spreading measures in randomly initialized variational quantum circuits and introduce entanglement diagnostics for efficient variational quantum/classical computations. We establish a robust connection between entanglement measures and optimization accuracy by solving two eigensolver problems for Ising Hamiltonians with nearest-neighbor and long-range spin interactions. As the circuit depth affects the average entanglement of random circuit states, the entanglement diagnostics can identify a high-performing depth range for optimization tasks encoded in local Hamiltonians. We argue, based on an eigensolver problem for the Sachdev–Ye–Kitaev model, that entanglement alone is insufficient as a diagnostic to the approximation of volume-law entangled target states and that a large number of circuit parameters is needed for such an optimization task. 
                        more » 
                        « less   
                    
                            
                            Quantum chaos and circuit parameter optimization
                        
                    
    
            Abstract We consider quantum chaos diagnostics of the variational circuit states at random parameters and explore their connection to the circuit expressibility and optimizability. By measuring the operator spreading coefficient and the eigenvalue spectrum of the modular Hamiltonian of the reduced density matrix, we identify the emergence of universal random matrix ensembles in high-depth circuit states. The diagnostics that use the eigenvalue spectrum, e.g. operator spreading and entanglement entropy, turn out to be more accurate measures of the variational quantum algorithm optimization efficiency than those that use the level spacing distribution of the entanglement spectrum, such as r -statistics or spectral form factors. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1911298
- PAR ID:
- 10411127
- Date Published:
- Journal Name:
- Journal of Statistical Mechanics: Theory and Experiment
- Volume:
- 2023
- Issue:
- 2
- ISSN:
- 1742-5468
- Page Range / eLocation ID:
- 023104
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Random quantum circuits continue to inspire a wide range of applications in quantum information science and many-body quantum physics, while remaining analytically tractable through probabilistic methods. Motivated by an interest in deterministic circuits with similar applications, we construct classes of nonrandom unitary Clifford circuits by imposing translation invariance in both time and space. Further imposing dual unitarity, our circuits effectively become crystalline spacetime lattices whose vertices are swap or iswap two-qubit gates and whose edges may contain one-qubit gates. One can then require invariance under (subgroups of) the crystal’s point group. Working on the square and kagome lattices, we use the formalism of Clifford quantum cellular automata to describe operator spreading, entanglement generation, and recurrence times of these circuits. A full classification on the square lattice reveals, of particular interest, a “nonfractal good scrambling class” with dense operator spreading that generates codes with linear contiguous code distance and high performance under erasure errors at the end of the circuit. We also break unitarity by adding spacetime translation-invariant measurements and find a class of such circuits with fractal dynamics.more » « less
- 
            Entanglement is the defining characteristic of quantum mechanics. Bipartite entanglement is characterized by the von Neumann entropy. Entanglement is not just described by a number, however; it is also characterized by its level of complexity. The complexity of entanglement is at the root of the onset of quantum chaos, universal distribution of entanglement spectrum statistics, hardness of a disentangling algorithm and of the quantum machine learning of an unknown random circuit, and universal temporal entanglement fluctuations. In this paper, we numerically show how a crossover from a simple pattern of entanglement to a universal, complex pattern can be driven by doping a random Clifford circuit with gates. This work shows that quantum complexity and complex entanglement stem from the conjunction of entanglement and non-stabilizer resources, also known as magic.more » « less
- 
            A bstract Negativity is a measure of entanglement that can be used both in pure and mixed states. The negativity spectrum is the spectrum of eigenvalues of the partially transposed density matrix, and characterizes the degree and “phase” of entanglement. For pure states, it is simply determined by the entanglement spectrum. We use a diagrammatic method complemented by a modification of the Ford-Fulkerson algorithm to find the negativity spectrum in general random tensor networks with large bond dimensions. In holography, these describe the entanglement of fixed-area states. It was found that many fixed-area states have a negativity spectrum given by a semi-circle. More generally, we find new negativity spectra that appear in random tensor networks, as well as in phase transitions in holographic states, wormholes, and holographic states with bulk matter. The smallest random tensor network is the same as a micro-canonical version of Jackiw-Teitelboim (JT) gravity decorated with end-of-the-world branes. We consider the semi-classical negativity of Hawking radiation and find that contributions from islands should be included. We verify this in the JT gravity model, showing the Euclidean wormhole origin of these contributions.more » « less
- 
            Quantum many-body scar states are highly excited eigenstates of many-body systems that exhibit atypical entanglement and correlation properties relative to typical eigenstates at the same energy density. Scar states also give rise to infinitely long-lived coherent dynamics when the system is prepared in a special initial state having finite overlap with them. Many models with exact scar states have been constructed, but the fate of scarred eigenstates and dynamics when these models are perturbed is difficult to study with classical computational techniques. In this work, we propose state preparation protocols that enable the use of quantum computers to study this question. We present protocols both for individual scar states in a particular model, as well as superpositions of them that give rise to coherent dynamics. For superpositions of scar states, we present both a system-size-linear depth unitary and a finite-depth nonunitary state preparation protocol, the latter of which uses measurement and postselection to reduce the circuit depth. For individual scarred eigenstates, we formulate an exact state preparation approach based on matrix product states that yields quasipolynomial-depth circuits, as well as a variational approach with a polynomial-depth ansatz circuit. We also provide proof of principle state-preparation demonstrations on superconducting quantum hardware.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    