Abstract A local ring R is regular if and only if every finitely generated R -module has finite projective dimension. Moreover, the residue field k is a test module: R is regular if and only if k has finite projective dimension. This characterization can be extended to the bounded derived category $$\mathsf {D}^{\mathsf f}(R)$$ , which contains only small objects if and only if R is regular. Recent results of Pollitz, completing work initiated by Dwyer–Greenlees–Iyengar, yield an analogous characterization for complete intersections: R is a complete intersection if and only if every object in $$\mathsf {D}^{\mathsf f}(R)$$ is proxy small. In this paper, we study a return to the world of R -modules, and search for finitely generated R -modules that are not proxy small whenever R is not a complete intersection. We give an algorithm to construct such modules in certain settings, including over equipresented rings and Stanley–Reisner rings.
more »
« less
A Type B Analogue of the Category of Finite Sets with Surjections
We define a type B analogue of the category of finite sets with surjections, and we study the representation theory of this category. We show that the opposite category is quasi-Gröbner, which implies that submodules of finitely generated modules are again finitely generated. We prove that the generating functions of finitely generated modules have certain prescribed poles, and we obtain restrictions on the representations of type B Coxeter groups that can appear in such modules. Our main example is a module that categorifies the degree i Kazhdan–Lusztig coefficients of type B Coxeter arrangements.
more »
« less
- Award ID(s):
- 1954050
- PAR ID:
- 10411227
- Date Published:
- Journal Name:
- The Electronic Journal of Combinatorics
- Volume:
- 29
- Issue:
- 3
- ISSN:
- 1077-8926
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We study the category of S p \mathbf {Sp} -equivariant modules over the infinite variable polynomial ring, where S p \mathbf {Sp} denotes the infinite symplectic group. We establish a number of results about this category: for instance, we show that every finitely generated module M M fits into an exact triangle T → M → F → T \to M \to F \to where T T is a finite length complex of torsion modules and F F is a finite length complex of “free” modules; we determine the Grothendieck group; and we (partially) determine the structure of injective modules. We apply these results to show that the twisted commutative algebras Sym ( C ∞ ⊕ ⋀ 2 C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \bigwedge ^2{\mathbf {C}^{\infty }}) and Sym ( C ∞ ⊕ Sym 2 C ∞ ) \operatorname {Sym}(\mathbf {C}^{\infty } \oplus \operatorname {Sym}^2{\mathbf {C}^{\infty }}) are noetherian, which are the strongest results to date of this kind. We also show that the free 2-step nilpotent twisted Lie algebra and Lie superalgebra are noetherian.more » « less
-
We provide a new method of constructing non-quasiconvex subgroups of hyperbolic groups by utilizing techniques inspired by Stallings’ foldings. The hyperbolic groups constructed are in the natural class of right-angled Coxeter groups (RACGs for short) and can be chosen to be -dimensional. More specifically, given a non-quasiconvex subgroup of a (possibly non-hyperbolic) RACG, our construction gives a corresponding non-quasiconvex subgroup of a hyperbolic RACG. We use this to construct explicit examples of non-quasiconvex subgroups of hyperbolic RACGs including subgroups whose generators are as short as possible (length two words), finitely generated free subgroups, non-finitely presentable subgroups, and subgroups of fundamental groups of square complexes of nonpositive sectional curvature.more » « less
-
Abstract We describe the universal target of annular Khovanov–Rozansky link homology functors as the homotopy category of a free symmetric monoidal linear category generated by one object and one endomorphism. This categorifies the ring of symmetric functions and admits categorical analogues of plethystic transformations, which we use to characterize the annular invariants of Coxeter braids. Further, we prove the existence of symmetric group actions on the Khovanov–Rozansky invariants of cabled tangles and we introduce spectral sequences that aid in computing the homologies of generalized Hopf links. Finally, we conjecture a characterization of the horizontal traces of Rouquier complexes of Coxeter braids in other types.more » « less
-
We study the category whose objects are graphs of fixed genus and whose morphisms are contractions. We show that the corresponding contravariant module categories are Noetherian and we study two families of modules over these categories. The first takes a graph to a graded piece of the homology of its unordered configuration space and the second takes a graph to an intersection homology group whose dimension is given by a Kazhdan–Lusztig coefficient; in both cases we prove that the module is finitely generated. This allows us to draw conclusions about torsion in the homology groups of graph configuration spaces, and about the growth of Betti numbers of graph configuration spaces and Kazhdan–Lusztig coefficients of graphical matroids. We also explore the relationship between our category and outer space, which is used in the study of outer automorphisms of free groups.more » « less
An official website of the United States government

