Cryptochromes are blue light‐absorbing photoreceptors found in plants and animals with many important signalling functions. These include control of plant growth, development, and the entrainment of the circadian clock. Plant cryptochromes have recently been implicated in adaptations to temperature variation, including temperature compensation of the circadian clock. However, the effect of temperature directly on the photochemical properties of the cryptochrome photoreceptor remains unknown. Here we show that the response to light of purified
- Award ID(s):
- 2011401
- NSF-PAR ID:
- 10411271
- Date Published:
- Journal Name:
- Physical Review Materials
- Volume:
- 6
- Issue:
- 7
- ISSN:
- 2475-9953
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract Arabidopsis Cry1 and Cry2 proteins was significantly altered by temperature. Spectral analysis at 15°C showed a pronounced decrease in flavin reoxidation rates from the biologically active, light‐induced (FADH°) signalling state of cryptochrome to the inactive (FADox) resting redox state as compared to ambient (25°C) temperature. This result indicates that at low temperatures, the concentration of the biologically active FADH° redox form of Cry is increased, leading to the counterintuitive prediction that there should be an increased biological activity of Cry at lower temperatures. This was confirmed using Cry1 cryptochrome C‐terminal phosphorylation as a direct biological assay for Cry activationin vivo . We conclude that enhanced cryptochrome functionin vivo at low temperature is consistent with modulation by temperature of the cryptochrome photocycle. -
ABSTRACT High-redshift quasars ionize He ii into He iii around them, heating the intergalactic medium in the process and creating large regions with elevated temperature. In this work, we demonstrate a method based on a convolutional neural network (CNN) to recover the spatial profile for T0, the temperature at the mean cosmic density, in quasar proximity zones. We train the neural network with synthetic spectra drawn from a Cosmic Reionization on Computers simulation. We discover that the simple CNN is able to recover the temperature profile with an accuracy of ≈1400 K in an idealized case of negligible observational uncertainties. We test the robustness of the CNN and discover that it is robust against the uncertainties in quasar host halo mass, quasar continuum, and ionizing flux. We also find that the CNN has good generality with regard to the hardness of quasar spectra. This shows that with noiseless spectra, one could use a simple CNN to distinguish gas inside or outside the He iii region created by the quasar. Because the size of the He iii region is closely related to the total quasar lifetime, this method has great potential in constraining the quasar lifetime on ∼Myr time-scales. However, noise poses a big problem for accuracy and could downgrade the accuracy to ≈2340 K even for very high signal-to-noise (≳50) spectra. Future studies are needed to reduce the error associated with noise to constrain the lifetimes of reionization epoch quasars with currently available data.