skip to main content


Title: Plasma diagnostics and modeling of lithium-containing plasmas
Abstract Thin-film deposition from chemically reactive multi-component plasmas is complex, and the lack of electron collision cross-sections for even the most common metalorganic precursors and their fragments complicates their modeling based on fundamental plasma physics. This study focuses on understanding the plasma physics and chemistry in argon (Ar) plasmas containing lithium bis (trimethylsilyl) amide used to deposit Li x Si y thin films. These films are emerging as potential solid electrolytes for lithium-ion batteries, and the Li-to-Si ratio is a crucial parameter to enhance their ionic conductivity. We deposited Li x Si y films in an axial flow-through plasma reactor and studied the factors that determine the variation of the Li-to-Si ratio in films deposited at various points on a substrate spanning the entire reactor axis. While the Li-to-Si ratio is 1:2 in the precursor, the Li-to-Si ratio is as high as 3:1 in films deposited near the plasma entrance and decreases to 1:1 for films deposited downstream. Optical emission from the plasma is dominated by Li emission near the entrance, but Li emission disappears downstream, which we attribute to the complete consumption of the precursor. We hypothesized that the axially decreasing precursor concentration affects the electron energy distribution function in a way that causes different dissociation efficiencies for the production of Li and Si. We used Li line intensities to estimate the local precursor concentration and Ar line ratios to estimate the local reduced electric field to test this hypothesis. This analysis suggests that the mean electron energy increases along the reactor axis with decreasing precursor concentration. The decreasing Li-to-Si ratio with axially decreasing precursor concentration may be explained by Li release from the precursor having lower threshold energy than Si release.  more » « less
Award ID(s):
2011401
NSF-PAR ID:
10411322
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Physics D: Applied Physics
Volume:
55
Issue:
25
ISSN:
0022-3727
Page Range / eLocation ID:
254001
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Activation of liquids with atmospheric pressure plasmas is being investigated for envi-ronmental and biomedical applications. When activating the liquid using gas plasma produced species (as opposed to plasmas sustained in the liquid), a rate limiting step is transport of these species into the liquid. To first order, the efficiency of activating the liquid is improved by in-creasing the ratio of the surface area of the water in contact with the plasma compared to its vol-ume – often called the surface-to-volume ratio (SVR). Maximizing the SVR then motivates the plasma treatment of thin films of liquids. In this paper, results are discussed from a computa-tional investigation using a global model of atmospheric pressure plasma treatment of thin water films by a dielectric barrier discharge (DBD) sustained in different gases (Ar, He, air, N2, O2). The densities of reactive species in the plasma activated water (PAW) are evaluated. The resi-dence time of the water in contact with the plasma is increased by recirculating the PAW in plasma reactor. Longer lived species such as H2O2aq and NO3−aq accumulate over time (aq de-notes an aqueous species). DBDs sustained in Ar and He are the most efficient at producing H2O2aq, DBDs sustained in argon produces the largest density of NO3−aq with the lowest pH, and discharges sustained in O2 and air produce the highest densities of O3aq. Comparisons to experi-ments by others show agreement in the trends in densities in PAW including O3aq, OHaq, H2O2aq and NO3−aq, and highlight the importance of controlling desolvation of species from the activated water. 
    more » « less
  2. The effects of downstream plasma exposure with O 2 , N 2 or CF 4 discharges on Si-doped Ga 2 O 3 Schottky diode forward and reverse current-voltage characteristics were investigated. The samples were exposed to discharges with rf power of 50 W plasma at a pressure of 400 mTorr and a fixed treatment time of 1 min to simulate dielectric layer removal, photoresist ashing or surface cleaning steps. Schottky contacts were deposited through a shadow mask after exposure to avoid any changes to the surface. A Schottky barrier height of 1.1 eV was obtained for the reference sample without plasma treatment, with an ideality factor of 1.0. The diodes exposed to CF 4 showed a 0.25 V shift from the I–V of the reference sample due to a Schottky barrier height lowering around 14%. The diodes showed a decrease of Schottky barrier height of 2.5 and 6.5% with O 2 or N 2 treatments, respectively. The effect of plasma exposure on the ideality factor of diodes treated with these plasmas was minimal; 0.2% for O 2 and N 2 , 0.3% for CF 4 , respectively. The reverse leakage currents were 1.2, 2.2 and 4.8 μ A cm −2 for the diodes treated with O 2 , and CF 4 , and N 2 respectively. The effect of downstream plasma treatment on diode on-resistance and on-off ratio were also minimal. The changes observed are much less than caused by exposure to hydrogen-containing plasmas and indicate that downstream plasma stripping of films from Ga 2 O 3 during device processing is a relatively benign approach. 
    more » « less
  3. Ever-increasing demands for energy, particularly being environmentally friendly have promoted the transition from fossil fuels to renewable energy.1Lithium-ion batteries (LIBs), arguably the most well-studied energy storage system, have dominated the energy market since their advent in the 1990s.2However, challenging issues regarding safety, supply of lithium, and high price of lithium resources limit the further advancement of LIBs for large-scale energy storage applications.3Therefore, attention is being concentrated on an alternative electrochemical energy storage device that features high safety, low cost, and long cycle life. Rechargeable aqueous zinc-ion batteries (ZIBs) is considered one of the most promising alternative energy storage systems due to the high theoretical energy and power densities where the multiple electrons (Zn2+) . In addition, aqueous ZIBs are safer due to non-flammable electrolyte (e.g., typically aqueous solution) and can be manufactured since they can be assembled in ambient air conditions.4As an essential component in aqueous Zn-based batteries, the Zn metal anode generally suffers from the growth of dendrites, which would affect battery performance in several ways. Second, the led by the loose structure of Zn dendrite may reduce the coulombic efficiency and shorten the battery lifespan.5

    Several approaches were suggested to improve the electrochemical stability of ZIBs, such as implementing an interfacial buffer layer that separates the active Zn from the bulk electrolyte.6However, the and thick thickness of the conventional Zn metal foils remain a critical challenge in this field, which may diminish the energy density of the battery drastically. According to a theretical calculation, the thickness of a Zn metal anode with an areal capacity of 1 mAh cm-2is about 1.7 μm. However, existing extrusion-based fabrication technologies are not capable of downscaling the thickness Zn metal foils below 20 μm.

    Herein, we demonstrate a thickness controllable coating approach to fabricate an ultrathin Zn metal anode as well as a thin dielectric oxide separator. First, a 1.7 μm Zn layer was uniformly thermally evaporated onto a Cu foil. Then, Al2O3, the separator was deposited through sputtering on the Zn layer to a thickness of 10 nm. The inert and high hardness Al2O3layer is expected to lower the polarization and restrain the growth of Zn dendrites. Atomic force microscopy was employed to evaluate the roughness of the surface of the deposited Zn and Al2O3/Zn anode structures. Long-term cycling stability was gauged under the symmetrical cells at 0.5 mA cm-2for 1 mAh cm-2. Then the fabricated Zn anode was paired with MnO2as a full cell for further electrochemical performance testing. To investigate the evolution of the interface between the Zn anode and the electrolyte, a home-developed in-situ optical observation battery cage was employed to record and compare the process of Zn deposition on the anodes of the Al2O3/Zn (demonstrated in this study) and the procured thick Zn anode. The surface morphology of the two Zn anodes after circulation was characterized and compared through scanning electron microscopy. The tunable ultrathin Zn metal anode with enhanced anode stability provides a pathway for future high-energy-density Zn-ion batteries.

    Obama, B., The irreversible momentum of clean energy.Science2017,355(6321), 126-129.

    Goodenough, J. B.; Park, K. S., The Li-ion rechargeable battery: a perspective.J Am Chem Soc2013,135(4), 1167-76.

    Li, C.; Xie, X.; Liang, S.; Zhou, J., Issues and Future Perspective on Zinc Metal Anode for Rechargeable Aqueous Zinc‐ion Batteries.Energy & Environmental Materials2020,3(2), 146-159.

    Jia, H.; Wang, Z.; Tawiah, B.; Wang, Y.; Chan, C.-Y.; Fei, B.; Pan, F., Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries.Nano Energy2020,70.

    Yang, J.; Yin, B.; Sun, Y.; Pan, H.; Sun, W.; Jia, B.; Zhang, S.; Ma, T., Zinc Anode for Mild Aqueous Zinc-Ion Batteries: Challenges, Strategies, and Perspectives.Nanomicro Lett2022,14(1), 42.

    Yang, Q.; Li, Q.; Liu, Z.; Wang, D.; Guo, Y.; Li, X.; Tang, Y.; Li, H.; Dong, B.; Zhi, C., Dendrites in Zn-Based Batteries.Adv Mater2020,32(48), e2001854.

    Acknowledgment

    This work was partially supported by the U.S. National Science Foundation (NSF) Award No. ECCS-1931088. S.L. and H.W.S. acknowledge the support from the Improvement of Measurement Standards and Technology for Mechanical Metrology (Grant No. 22011044) by KRISS.

    Figure 1

     

    more » « less
  4. Abstract

    Experiments have been conducted in the DIII-D tokamak to explore thein-situgrowth of silicon-rich layers as a potential technique for real-time replenishment of surface coatings on plasma-facing components (PFCs) during steady-state long-pulse reactor operation. Silicon (Si) pellets of 1 mm diameter were injected into low- and high-confinement (L-mode and H-mode) plasma discharges with densities ranging from 3.9–7.5×1019m−3and input powers ranging from 5.5 to 9 MW. The small Si pellets were delivered with the impurity granule injector at frequencies ranging from 4 to 16 Hz corresponding to mass flow rates of 5–19 mg s−1(1–4.2×1020Si s−1) at cumulative amounts of up to 34 mg of Si per five-second discharge. Graphite samples were exposed to the scrape-off layer and private flux region plasmas through the divertor material evaluation system to evaluate the Si deposition on the divertor targets. The Si II emission at the sample correlates with silicon injection and suggests net surface Si-deposition in measurable amounts. Post-mortem analysis showed Si-rich coatings containing silicon oxides, of which SiO2is the dominant component. No evidence of SiC was found, which is attributed to low divertor surface temperatures. Thein-situand ex-situ analysis found that Si-rich coatings of at least 0.4–1.2 nm thickness have been deposited at 0.4–0.7 nm s−1. The technique is estimated to coat a surface area of at least 0.94 m2on the outer divertor. These results demonstrate the potential of using real-time material injection to form Si-enriched layers on divertor PFCs during reactor operation.

     
    more » « less
  5. Tunneling field effect transistors (TFETs) have gained much interest in the previous decade for use in low power CMOS electronics due to their sub-thermal switching [1]. To date, all TFETs are fabricated as vertical nanowires or fins with long, difficult processes resulting in long learning cycle and incompatibility with modern CMOS processing. Because most TFETs are heterojunction TFETs (HJ-TFETs), the geometry of the device is inherently vertically because dictated by the orientation of the tunneling HJ, achieved by typical epitaxy. Template assisted selective epitaxy was demonstrated for vertical nanowires [2] and horizontally arranged nanorods [3] for III-V on Si integration. In this work, we report results on the area selective and template assisted epitaxial growth of InP, utilizing SiO2 based confined structures on InP substrates, which enables horizontal HJs, that can find application in the next generation of TFET devices. The geometries of the confined structures used are so that only a small area of the InP substrate, dubbed seed, is visible to the growth atmosphere. Growth is initiated selectively only at the seed and then proceeds in the hollow channel towards the source hole. As a result, growth resembles epitaxial lateral overgrowth from a single nucleation point [4], reaping the benefits of defect confinement and, contrary to spontaneous nanowire growth, allows orientation in an arbitrary, template defined direction. Indium phosphide 2-inch (110) wafers are used as the starting substrate. The process flow (Fig.1) consists of two plasma enhanced chemical vapor deposition (PECVD) steps of SiO2, appropriately patterned with electron beam lithography (EBL), around a PECVD amorphous silicon sacrificial layer. The sacrificial layer is ultimately wet etched with XeF2 to form the final, channel like template. Not shown in the schematic in Fig.1 is an additional, ALD deposited, 3 nm thick, alumina layer which prevents plasma damage to the starting substrate and is removed via a final tetramethylammonium hydroxide (TMAH) based wet etch. As-processed wafers were then diced and loaded in a Thomas Swan Horizontal reactor. Successful growth conditions found were 600°C with 4E6 mol/min of group III precursor, a V/III ratio of 400 and 8 lpm of hydrogen as carrier gas. Trimethylindium (TMIn) and tertiarybutylphosphine (TBP) were used as In and P precursors respectively. Top view SEM (Fig.2) confirms growth in the template thanks to sufficient Z-contrast despite the top oxide layer, not removed before imaging. TEM imaging shows a cross section of the confined structure taken at the seed hole (Fig.3). The initial growth interface suggests growth was initiated at the seed hole and atomic order of the InP conforms to the SiO2 template both at the seed and at the growth front. A sharp vertical facet is an encouraging result for the future development of vertical HJ based III-V semiconductor devices. 
    more » « less