skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Data-Driven Approach for Assessing Sea Level Rise Vulnerability Applied to Puget Sound, Washington State, USA
Sea level rise (SLR) will exert pressures on assets with social value, including things such as infrastructure and habitats, in the coastal zone. Assessing and ranking the vulnerability of those assets can provide insights that support planning and projects that can reduce those vulnerabilities. In this study, we develop a quantitative, data-drive framework for calculating a sea level rise vulnerability score, using publicly available spatial data, for 111,239 parcels in Puget Sound, Washington State, USA. Notably, our approach incorporates an assessment of coastal erosion, as well as coastal flooding, in an evaluation of the exposure of each parcel, and impacts to habitats are quantified alongside impacts to existing infrastructure. The results suggest that sea level rise vulnerability in Puget Sound is widely distributed, but the overall distribution of scores is heavily skewed, suggesting that adaptation actions directed at a relatively small number of parcels could yield significant reductions in vulnerability. The results are also coupled with a concurrently developed social vulnerability index, which provides additional insight regarding those people and places that may be predisposed to adverse impacts from SLR-related hazards. We find that the proposed approach offers advantages in terms of advancing equitable SLR-related risk reduction, but also that the results should be carefully interpreted considering embedded assumptions and data limitations.  more » « less
Award ID(s):
2103713
PAR ID:
10411353
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Sustainability
Volume:
15
Issue:
6
ISSN:
2071-1050
Page Range / eLocation ID:
5401
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Surface effects of sea‐level rise (SLR) in permafrost regions are obvious where increasingly iceless seas erode and inundate coastlines. SLR also drives saltwater intrusion, but subsurface impacts on permafrost‐bound coastlines are unseen and unclear due to limited field data and the absence of models that include salinity‐dependent groundwater flow with solute exclusion and freeze‐thaw dynamics. Here, we develop a numerical model with the aforementioned processes to investigate climate change impacts on coastal permafrost. We find that SLR drives lateral permafrost thaw due to depressed freezing temperatures from saltwater intrusion, whereas warming drives top‐down thaw. Under high SLR and low warming scenarios, thaw driven by SLR exceeds warming‐driven thaw when normalized to the influenced surface area. Results highlight an overlooked feedback mechanism between SLR and permafrost thaw with potential implications for coastal infrastructure, ocean‐aquifer interactions, and carbon mobilization. 
    more » « less
  2. Abstract Rising groundwater tables due to sea level rise (SLR) pose a critical but understudied threat to low‐lying coastal regions. This study uses field observations and dynamic modeling to investigate drivers of groundwater variability and to project flooding risks from emergent groundwater in Imperial Beach, California. Hourly groundwater table data from four monitoring wells (2021–2024) reveal distinct aquifer behaviors across soil types. In transmissive coastal sandy soils, groundwater levels are dominated by ocean tides, with secondary contributions from non‐tidal sea level variability and seasonal recharge. In this setting, we calibrated an empirical groundwater model to observations, and forced the model with regional SLR scenarios. We project that groundwater emergence along the low‐lying coastal road will begin by the 2060s under intermediate SLR trajectories, and escalate to near‐daily flooding by 2100. Over 20% of San Diego County's coastline shares similar transmissive sandy geology and thus similar flooding risk. Results underscore the urgency of integrating groundwater hazards into coastal resilience planning, as current adaptation strategies in Imperial Beach—focused on surface flooding—are insufficient to address infrastructure vulnerabilities from below. This study provides a transferable framework for assessing groundwater‐driven flooding in transmissive coastal aquifers, where SLR‐induced groundwater rise threatens critical infrastructure decades before permanent inundation. 
    more » « less
  3. Adnan, Mohammed_Sarfaraz Gani (Ed.)
    Climate change poses great risks to archaeological heritage, especially in coastal regions. Preparing to mitigate these challenges requires detailed and accurate assessments of how coastal heritage sites will be impacted by sea level rise (SLR) and storm surge, driven by increasingly severe storms in a warmer climate. However, inconsistency between modeled impacts of coastal erosion on archaeological sites and observed effects has thus far hindered our ability to accurately assess the vulnerability of sites. Modeling of coastal impacts has largely focused on medium-to-long term SLR, while observations of damage to sites have almost exclusively focused on the results of individual storm events. There is therefore a great need for desk-based modeling of the potential impacts of individual storm events to equip cultural heritage managers with the information they need to plan for and mitigate the impacts of storm surge in various future sea level scenarios. Here, we apply the Sea, Lake, and Overland Surges from Hurricanes (SLOSH) model to estimate the risks that storm surge events pose to archaeological sites along the coast of the US State of Georgia in four different SLR scenarios. Our results, shared with cultural heritage managers in the Georgia Historic Preservation Division to facilitate prioritization, documentation, and mitigation efforts, demonstrate that over 4200 archaeological sites in Georgia alone are at risk of inundation and erosion from hurricanes, more than ten times the number of sites that were previously estimated to be at risk by 2100 accounting for SLR alone. We hope that this work encourages necessary action toward conserving coastal physical cultural heritage in Georgia and beyond. 
    more » « less
  4. Abstract Sea‐level rise (SLR) increasingly threatens coastal communities around the world. However, not all coastal communities are equally threatened, and realistic estimation of hazard is difficult. Understanding SLR impacts on extreme sea level is challenging due to interactions between multiple tidal and non‐tidal flood drivers. We here use global hourly tidal data to show how and why tides and surges interact with mean sea level (MSL) fluctuations. At most locations around the world, the amplitude of at least one tidal constituent and/or amplitude of non‐tidal residual have changed in response to MSL variation over the past few decades. In 37% of studied locations, “Potential Maximum Storm Tide” (PMST), a proxy for extreme sea level dynamics, co‐varies with MSL variations. Over all stations, the median PMST will be 20% larger by the mid‐century, and conventional approaches that simply shift the current storm tide regime up at the rate of projected SLR may underestimate the flooding hazard at these locations by up to a factor of four. Micro‐ and meso‐tidal systems and those with diurnal tidal regime are generally more susceptible to altered MSL than other categories. The nonlinear interactions of MSL and storm tide captured in PMST statistics contribute, along with projected SLR, to the estimated increase in flood hazard at three‐fourth of studied locations by mid‐21st century. PMST is a threshold that captures nonlinear interactions between extreme sea level components and their co‐evolution over time. Thus, use of this statistic can help direct assessment and design of critical coastal infrastructure. 
    more » « less
  5. Sea level rise (SLR) may impose substantial economic costs to coastal communities worldwide, but characterizing its global impact remains challenging because SLR costs depend heavily on natural characteristics and human investments at each location – including topography, the spatial distribution of assets, and local adaptation decisions. To date, several impact models have been developed to estimate the global costs of SLR. Yet, the limited availability of open-source and modular platforms that easily ingest up-to-date socioeconomic and physical data sources restricts the ability of existing systems to incorporate new insights transparently. In this paper, we present a modular, open-source platform designed to address this need, providing end-to-end transparency from global input data to a scalable least-cost optimization framework that estimates adaptation and net SLR costs for nearly 10 000 global coastline segments and administrative regions. Our approach accounts both for uncertainty in the magnitude of global mean sea level (g.m.s.l.) rise and spatial variability in local relative sea level rise. Using this platform, we evaluate costs across 230 possible socioeconomic and SLR trajectories in the 21st century. According to the latest Intergovernmental Panel on Climate Change Assessment Report (AR6), g.m.s.l. is likely to rise during the 21st century by 0.40–0.69 m if late-century warming reaches 2 ∘C and by 0.58–0.91 m with 4 ∘C of warming (Fox-Kemper et al., 2021). With no forward-looking adaptation, we estimate that annual costs of sea level rise associated with a 2 ∘C scenario will likely fall between USD 1.2 and 4.0 trillion (0.1 % and 1.2 % of GDP, respectively) by 2100, depending on socioeconomic and sea level rise trajectories. Cost-effective, proactive adaptation would provide substantial benefits, lowering these values to between USD 110 and USD 530 billion (0.02 and 0.06 %) under an optimal adaptation scenario. For the likely SLR trajectories associated with 4 ∘C warming, these costs range from USD 3.1 to 6.9 trillion (0.3 % and 2.0 %) with no forward-looking adaptation and USD 200 billion to USD 750 billion (0.04 % to 0.09 %) under optimal adaptation. The Intergovernmental Panel on Climate Change (IPCC) notes that deeply uncertain physical processes like marine ice cliff instability could drive substantially higher global sea level rise, potentially approaching 2.0 m by 2100 in very high emission scenarios. Accordingly, we also model the impacts of 1.5 and 2.0 m g.m.s.l. rises by 2100; the associated annual cost estimates range from USD 11.2 to 30.6 trillion (1.2 % and 7.6 %) under no forward-looking adaptation and USD 420 billion to 1.5 trillion (0.08 % to 0.20 %) under optimal adaptation. Our modeling platform used to generate these estimates is publicly available in an effort to spur research collaboration and support decision-making, with segment-level physical and socioeconomic input characteristics provided at https://doi.org/10.5281/zenodo.7693868 (Bolliger et al., 2023a) and model results at https://doi.org/10.5281/zenodo.7693869 (Bolliger et al., 2023b). 
    more » « less