Nanoparticles are an indispensable part of our lives. From electronic devices to drug delivery to catalysis and energy storage, nanoparticles have found various important applications. Out of the many synthetic strategies to generate nanoparticles, electrodeposition has stood out due to its cost effectiveness, low time consumption and simplicity. However, traditional electrodeposition techniques have suffered from controlling the size, shape, morphology and microstructure of nanoparticles. Here, we use a technique called nanodroplet‐mediated electrodeposition, where nanodroplets carrying the metal salt precursor collide with a negatively‐biased electrode. In this work, we use this nanodroplet‐mediated electrodeposition technique along with transmission electron microscopy, selected‐area electron diffraction and high‐angle‐annular dark‐field scanning transmission electron microscopy to show control over the microstructure of single nanoparticles. Along with that, we use X‐ray photoelectron spectroscopy to get mechanistic insights behind the alteration of microstructure observed. Having achieved a control over the microstructure, we show the application by synthesising polycrystalline alloys at room temperature and evaluating the electrocatalytic behavior of the different microstructures towards the hydrogen evolution reaction. This fundamental work of controlling microstructures of single nanoparticles and its applications in alloy synthesis and electrocatalysis opens a new avenue of tuning nanoparticles for various applications.
more »
« less
The electrodeposition of gold nanoparticles from aqueous nanodroplets
Nanodroplet-mediated electrodeposition is a reliable method for electrodepositing nanoparticles by confining a small amount of metal-salt precursor in water nanodroplets (radius ∼400 nm) suspended in an oil continuous phase. This technique provides a great advantage in terms of nanoparticle size, morphology, and porosity. For an electrochemical reaction to proceed in the aqueous nanodroplet, the electroneutrality condition must be maintained. Classically, [NB 4 ][ClO 4 ] or a comparable salt is added to the oil continuous phase to maintain charge balance. Unfortunately, the presence of this salt in the oil phase causes some metal salts, such as HAuCl 4 , to phase transfer, disallowing the formation of gold nanoparticles. Here, we demonstrate the partitioning of HAuCl 4 is orders of magnitude lower using Inductively Coupled Plasma Mass Spectrometry (ICP-MS) when LiClO 4 is added to the nanodroplet phase and [NBu 4 ][ClO 4 ] is not added to the continuous phase. This simple change allows for the electrodeposition of gold nanoparticles. Scanning electron microscopy shows the morphology and size distribution of gold nanoparticles obtained at different concentrations of LiClO 4 . Transmission electron microscopy in selected diffraction mode was used and it determined the gold nanoparticles obtained are polycrystalline with miller indices of (222) and (200). This work widens the variety of nanoparticles that can be electrodeposited from nanodroplets for applications in energy storage and conversion, photoelectrochemistry, and biosensing.
more »
« less
- Award ID(s):
- 2045672
- PAR ID:
- 10411462
- Date Published:
- Journal Name:
- Chemical Communications
- Volume:
- 58
- Issue:
- 76
- ISSN:
- 1359-7345
- Page Range / eLocation ID:
- 10663 to 10666
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
To stabilize and transport them through complex systems, nanoparticles are often encapsulated in polymeric nanocarriers, which are tailored to specific environments. For example, a hydrophilic polymer capsule maintains circulation and stability of nanoparticles in aqueous environments. A more highly-designed nanocarrier might have a hydrophobic core and a hydrophilic shell to allow transport of hydrophobic nanoparticles and pharmaceuticals through physiological media. Polydimethylsiloxane, PDMS, is a hydrophobic material in a liquidlike state at room temperature. The preparation of stable, aqueous dispersions of PDMS droplets in water is problematic due to the intense mismatch in surface energies between PDMS and water. The present work describes the encapsulation of hydrophobic metal- and metal oxide nanoparticles within PDMS nanodroplets using flash nanoprecipitation. The PDMS is terminated by amino groups and the nanodroplet is capped with a layer of poly(styrene sulfonate), forming a glassy outer shell. The hydrophobic nanoparticles nucleate PDMS droplet formation, decreasing the droplet size. The resulting nanocomposite nanodroplets are stable in aqueous salt solutions without the use of surfactants. The hierarchical structuring, elucidated with small angle x-ray scattering, offers a new platform for the isolation and transport of hydrophobic molecules and nanoparticles through aqueous systems.more » « less
-
null (Ed.)Gold nanoparticles (GNPs) are commonly synthesized using the Turkevich method, but there are limitations on the maximum concentration of gold nanoparticles that can be achieved using this method (often < 1 mM (=0.34 mg/mL) gold precursor loading). Here, we report an inverse Turkevich method which significantly increases the concentration of gold nanoparticles (up to 5-fold) in the aqueous phase by introducing poly (vinyl alcohol) (PVA) to the synthesis system for stabilization. The aim of this study is to understand the effect of PVA and other synthesis parameters, such as trisodium citrate and tetrachloroauric acid concentration, with the goal of maximizing concentration while maintaining gold nanoparticle morphology, stability, and narrow size distribution. The size distribution of GNPs is investigated for a range of parameters by dynamic light scattering and electron microscopy, and ultraviolet-visible (UV–vis) spectroscopy is also utilized to explore the localized surface plasmon resonance (LSPR). Further, the interaction between GNPs and PVA is investigated by Fourier-transform infrared spectroscopy. In addition to increasing the gold loading by varying synthesis parameters, we also develop a novel anti-solvent precipitation method for the PVA-coated GNPs, which enables continuous condensation and purification of GNPs by forming a gold/PVA nanocomposite.more » « less
-
Titanium nitride (TiN) materials have gained an interest over the past years due to their unique characteristics, such as thermal stability, extreme hardness, low production cost, and comparable optical properties to gold. In the present study, TiN nanoparticles were synthesized via a thermal benzene route to obtain black nanoparticles. Scanning electron microscopy (SEM) was carried out to examine the morphology. Further microscopic characterization was done where the final product was drop cast onto double-sided conductive carbon tape and sputter-coated with gold/palladium at a thickness of 4 nm for characterization by field emission scanning electron microscopy (FE-SEM) with energy dispersive X-Ray spectroscopy (EDS) that revealed they are spherical. ImageJ software was used to measure the average size of the particles to be 79 nm in diameter. EDS was used to determine the elements present in the sample and concluded that there were no impurities. Further characterization by Fourier Transform infrared (FTIR) spectroscopy was carried out to identify the characteristic peaks of TiN. X-ray diffraction (XRD) revealed typical peaks of cubic phase titanium nitride, and crystallite size was determined to be 14 nm using the Debye-Scherrer method. Dynamic light scattering (DLS) analysis revealed the size distribution of the TiN nanoparticles, with nanoparticles averaging at 154 nm in diameter. Zeta potential concluded the surface of the TiN nanoparticles is negatively charged.more » « less
-
Perfluorocarbon nanodroplets (PFCnDs) are ultrasound contrast agents that phase-transition from liquid nanodroplets to gas microbubbles when activated by laser irradiation or insonated with an ultrasound pulse. The dynamics of PFCnDs can vary drastically depending on the nanodroplet composition, including the lipid shell properties. In this paper, we investigate the effect of varying the ratio of PEGylated to non-PEGylated phospholipids in the outer shell of PFCnDs on the acoustic nanodroplet vaporization (liquid to gas phase transition) and inertial cavitation (rapid collapse of the vaporized nanodroplets) dynamics in vitro when insonated with focused ultrasound. Nanodroplets with a high concentration of PEGylated lipids had larger diameters and exhibited greater variance in size distribution compared to nanodroplets with lower proportions of PEGylated lipids in the lipid shell. PFCnDs with a lipid shell composed of 50:50 PEGylated to non-PEGylated lipids yielded the highest B-mode image intensity and duration, as well as the greatest pressure difference between acoustic droplet vaporization onset and inertial cavitation onset. We demonstrate that slight changes in lipid shell composition of PFCnDs can significantly impact droplet phase transitioning and inertial cavitation dynamics. These findings can help guide researchers to fabricate PFCnDs with optimized compositions for their specific applications.more » « less
An official website of the United States government

