Necessary and sufficient conditions for the validity of the central limit theorem for densities are considered with respect to the norms in Orlicz spaces. The obtained characterization unites several results due to Gnedenko and Kolmogorov (uniform local limit theorem), Prokhorov (convergence in total variation) and Barron (entropic central limit theorem).
more »
« less
On the Quenched CLT for Stationary Markov Chains
In this paper, we give sufficient conditions for the almost sure central limit theorem started at a point, known under the name of quenched central limit theorem. This is achieved by using a new idea of conditioning with respect to both the past and the future of the Markov chain. As applications, we provide a new sufficient projective condition for the quenched CLT.
more »
« less
- Award ID(s):
- 2054598
- PAR ID:
- 10411478
- Editor(s):
- Fill, James Allen
- Date Published:
- Journal Name:
- Journal of Theoretical Probability
- ISSN:
- 0894-9840
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We explore probability distributions on the real line whose Laplace transform admits an upper bound of subgaussian type known as strict subgaussianity. One class in this family corresponds to entire characteristic functions having only real zeros in the complex plane. Using Hadamard’s factorization theorem, we extend this class and propose new sufficient conditions for strict subgaussianity in terms of location of zeros of the associated characteristic functions. The second part of this note deals with Laplace transforms of strictly subgaussian distributions with periodic components. This class contains interesting examples, for which the central limit theorem with respect to the Rényi entropy divergence of infinite order holds.more » « less
-
The paper is devoted to the investigation of Esscher’s transform on high dimensional Euclidean spaces in the light of its application to the central limit theorem. With this tool, we explore necessary and sufficient conditions of normal approximation for normalized sums of i.i.d. random vectors in terms of the Rényi divergence of infinite order, extending recent one dimensional results.more » « less
-
Abstract For a Brownian directed polymer in a Gaussian random environment, with q ( t , ⋅) denoting the quenched endpoint density and Q n ( t , x 1 , … , x n ) = E [ q ( t , x 1 ) … q ( t , x n ) ] , we derive a hierarchical PDE system satisfied by { Q n } n ⩾ 1 . We present two applications of the system: (i) we compute the generator of { μ t ( d x ) = q ( t , x ) d x } t ⩾ 0 for some special functionals, where { μ t ( d x ) } t ⩾ 0 is viewed as a Markov process taking values in the space of probability measures; (ii) in the high temperature regime with d ⩾ 3, we prove a quantitative central limit theorem for the annealed endpoint distribution of the diffusively rescaled polymer path. We also study a nonlocal diffusion-reaction equation motivated by the generator and establish a super-diffusive O ( t 2/3 ) scaling.more » « less
-
Abstract We present a probabilistic analysis of two Krylov subspace methods for solving linear systems. We prove a central limit theorem for norms of the residual vectors that are produced by the conjugate gradient and MINRES algorithms when applied to a wide class of sample covariance matrices satisfying some standard moment conditions. The proof involves establishing a four‐moment theorem for the so‐called spectral measure, implying, in particular, universality for the matrix produced by the Lanczos iteration. The central limit theorem then implies an almost‐deterministic iteration count for the iterative methods in question. © 2022 Wiley Periodicals LLC.more » « less
An official website of the United States government

