skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Universality for the Conjugate Gradient and MINRES Algorithms on Sample Covariance Matrices
Abstract We present a probabilistic analysis of two Krylov subspace methods for solving linear systems. We prove a central limit theorem for norms of the residual vectors that are produced by the conjugate gradient and MINRES algorithms when applied to a wide class of sample covariance matrices satisfying some standard moment conditions. The proof involves establishing a four‐moment theorem for the so‐called spectral measure, implying, in particular, universality for the matrix produced by the Lanczos iteration. The central limit theorem then implies an almost‐deterministic iteration count for the iterative methods in question. © 2022 Wiley Periodicals LLC.  more » « less
Award ID(s):
1945652
PAR ID:
10443736
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Communications on Pure and Applied Mathematics
Volume:
76
Issue:
5
ISSN:
0010-3640
Page Range / eLocation ID:
1085 to 1136
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Motivated by robust and quantile regression problems, we investigate the stochastic gradient descent (SGD) algorithm for minimizing an objective functionfthat is locally strongly convex with a sub--quadratic tail. This setting covers many widely used online statistical methods. We introduce a novel piecewise Lyapunov function that enables us to handle functionsfwith only first-order differentiability, which includes a wide range of popular loss functions such as Huber loss. Leveraging our proposed Lyapunov function, we derive finite-time moment bounds under general diminishing stepsizes, as well as constant stepsizes. We further establish the weak convergence, central limit theorem and bias characterization under constant stepsize, providing the first geometrical convergence result for sub--quadratic SGD. Our results have wide applications, especially in online statistical methods. In particular, we discuss two applications of our results. 1) Online robust regression: We consider a corrupted linear model with sub--exponential covariates and heavy--tailed noise. Our analysis provides convergence rates comparable to those for corrupted models with Gaussian covariates and noise. 2) Online quantile regression: Importantly, our results relax the common assumption in prior work that the conditional density is continuous and provide a more fine-grained analysis for the moment bounds. 
    more » « less
  2. Fill, James Allen (Ed.)
    In this paper, we give sufficient conditions for the almost sure central limit theorem started at a point, known under the name of quenched central limit theorem. This is achieved by using a new idea of conditioning with respect to both the past and the future of the Markov chain. As applications, we provide a new sufficient projective condition for the quenched CLT. 
    more » « less
  3. Necessary and sufficient conditions for the validity of the central limit theorem for densities are considered with respect to the norms in Orlicz spaces. The obtained characterization unites several results due to Gnedenko and Kolmogorov (uniform local limit theorem), Prokhorov (convergence in total variation) and Barron (entropic central limit theorem). 
    more » « less
  4. We consider the problem of efficient inference of the Average Treatment Effect in a sequential experiment where the policy governing the assignment of subjects to treatment or control can change over time. We first provide a central limit theorem for the Adaptive Augmented Inverse-Probability Weighted estimator, which is semiparametric efficient, under weaker assumptions than those previously made in the literature. This central limit theorem enables efficient inference at fixed sample sizes. We then consider a sequential inference setting, deriving both asymptotic and nonasymptotic confidence sequences that are considerably tighter than previous methods. These anytime-valid methods enable inference under data-dependent stopping times (sample sizes). Additionally, we use propensity score truncation techniques from the recent off-policy estimation literature to reduce the finite sample variance of our estimator without affecting the asymptotic variance. Empirical results demonstrate that our methods yield narrower confidence sequences than those previously developed in the literature while maintaining time-uniform error control. 
    more » « less
  5. A local limit theorem is proven on connected, simply connected nilpotent Lie groups, for a class of generating measures satisfying a moment condition and a condition on the characteristic function of the abelianization. The result extends an earlier local limit theorem of Alexopoulos which treated absolutely continuous measures with a continuous density of compact support, and also extends local limit theorems of Breuillard and Diaconis–Hough which treated general measures on the Heisenberg group. 
    more » « less