Early detection of cancer can significantly reduce mortality and save lives. However, the current cancer diagnosis is highly dependent on costly, complex, and invasive procedures. Thus, a great deal of effort has been devoted to exploring new technologies based on liquid biopsy. Since liquid biopsy relies on detection of circulating biomarkers from biofluids, it is critical to isolate highly purified cancer‐related biomarkers, including circulating tumor cells (CTCs), cell‐free nucleic acids (cell‐free DNA and cell‐free RNA), small extracellular vesicles (exosomes), and proteins. The current clinical purification techniques are facing a number of drawbacks including low purity, long processing time, high cost, and difficulties in standardization. Here, we review a promising solution, on‐chip electrokinetic‐based methods, that have the advantage of small sample volume requirement, minimal damage to the biomarkers, rapid, and label‐free criteria. We have also discussed the existing challenges of current on‐chip electrokinetic technologies and suggested potential solutions that may be worthy of future studies.
- Award ID(s):
- 2045640
- NSF-PAR ID:
- 10411567
- Date Published:
- Journal Name:
- Biosensors
- Volume:
- 13
- Issue:
- 3
- ISSN:
- 2079-6374
- Page Range / eLocation ID:
- 396
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract BACKGROUND Numerous studies have demonstrated the existence of stable regulatory RNAs, microRNAs (miRNAs), in the circulation and have shown that the spectrum of these extracellular miRNAs is affected by various pathologic conditions including cancers.
CONTENT Circulating miRNAs have been the focus of numerous cancer biomarker discovery efforts over the past few years; however, a considerable number of these studies have yielded inconsistent and irreproducible findings. Here, we have summarized and compared the results of studies covering 8 different cancer types to address key questions, including the possibility of using circulating miRNA to detect cancers and what factors may affect miRNA signatures. Although identifying circulating miRNA signatures to detect specific types of early stage cancers can be challenging, study results suggest that it may be possible to use miRNAs to detect cancers in general.
SUMMARY Circulating miRNA is a rich source for potential disease biomarkers; however, factors, both intrinsic and extrinsic, that may affect measurement of circulating miRNA have not been fully characterized. Better understanding of intra- and intercellular miRNA trafficking and the fundamental biology of cancer cell–derived lipid vesicles may facilitate the development of circulating miRNA-based biomarkers for cancer detection and classification.
-
Although therapeutic options for patients with advanced renal cell carcinoma (RCC) have increased in the past decade, no biomarkers are yet available for patient stratification or evaluation of therapy resistance. Given the dynamic and heterogeneous nature of clear cell RCC (ccRCC), tumor biopsies provide limited clinical utility, but liquid biopsies could overcome these limitations. Prior liquid biopsy approaches have lacked clinically relevant detection rates for patients with ccRCC. This study employed ccRCC‐specific markers, CAIX and CAXII, to identify circulating tumor cells (CTC) from patients with metastatic ccRCC. Distinct subtypes of ccRCC CTCs were evaluated for PD‐L1 and HLA‐I expression and correlated with patient response to therapy. CTC enumeration and expression of PD‐L1 and HLA‐I correlated with disease progression and treatment response, respectively. Longitudinal evaluation of a subset of patients demonstrated potential for CTC enumeration to serve as a pharmacodynamic biomarker. Further evaluation of phenotypic heterogeneity among CTCs is needed to better understand the clinical utility of this new biomarker.
-
Abstract Hepatocellular Carcinoma (HCC) is one of the most lethal cancers with a high mortality and recurrence rate. Circulating tumor cell (CTC) detection offers various opportunities to advance early detection and monitoring of HCC tumors which is crucial for improving patient outcome. We developed and optimized a novel Labyrinth microfluidic device to efficiently isolate CTCs from peripheral blood of HCC patients. CTCs were identified in 88.1% of the HCC patients over different tumor stages. The CTC positivity rate was significantly higher in patients with more advanced HCC stages. In addition, 71.4% of the HCC patients demonstrated CTCs positive for cancer stem cell marker, CD44, suggesting that the major population of CTCs could possess stemness properties to facilitate tumor cell survival and dissemination. Furthermore, 55% of the patients had the presence of circulating tumor microemboli (CTM) which also correlated with advanced HCC stage, indicating the association of CTM with tumor progression. Our results show effective CTC capture from HCC patients, presenting a new method for future noninvasive screening and surveillance strategies. Importantly, the detection of CTCs with stemness markers and CTM provides unique insights into the biology of CTCs and their mechanisms influencing metastasis, recurrence and therapeutic resistance.
-
null (Ed.)Advanced materials and chemo-specific designs at the nano/micrometer-scale have ensured revolutionary progress in next-generation clinically relevant technologies. For example, isolating a rare population of cells, like circulating tumor cells (CTCs) from the blood amongst billions of other blood cells, is one of the most complex scientific challenges in cancer diagnostics. The chemical tunability for achieving this degree of exceptional specificity for extra-cellular biomarker interactions demands the utility of advanced entities and multistep reactions both in solution and in the insoluble state. Thus, this review delineates the chemo-specific substrates, chemical methods, and structure–activity relationships (SARs) of chemical platforms used for isolation and enumeration of CTCs in advancing the relevance of liquid biopsy in cancer diagnostics and disease management. We highlight the synthesis of cell-specific, tumor biomarker-based, chemo-specific substrates utilizing functionalized linkers through chemistry-based conjugation strategies. The capacity of these nano/micro substrates to enhance the cell interaction specificity and efficiency with the targeted tumor cells is detailed. Furthermore, this review accounts for the importance of CTC capture and other downstream processes involving genotypic and phenotypic CTC analysis in real-time for the detection of the early onset of metastases progression and chemotherapy treatment response, and for monitoring progression free-survival (PFS), disease-free survival (DFS), and eventually overall survival (OS) in cancer patients.more » « less