skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Connecting Youth Using Arctic Mystery-Themed Kits.
Climate change is affecting Polar Regions at a greater rate than other parts of the planet and bringing information about Polar Regions to learners in informal settings is an integral part of increasing polar literacy. Inspired by escape rooms and mystery-themed materials that have increased in popularity over recent years and necessitated by disruptions during the pandemic, the Arctic Mystery engaged youth in small groups by challenging them to work together to make claims based on evidence and reasoning. This CSI-style kit features Arctic ecology, geography, and local connections as well as scientific data, research materials, and field research as content through which youth solve the mystery of a scientist’s disappearance. Preliminary results from virtual user-testing indicate high engagement throughout the six-session program. Further testing is required to determine whether the kit is associated with gains in self-reported scientific identity, fascination in science, and valuing science. The kit’s versatile format may be successful in other formats, including asynchronous and in-person settings.  more » « less
Award ID(s):
1906929
PAR ID:
10411605
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Journal of STEM outreach
Volume:
5
Issue:
1
ISSN:
2576-6767
Page Range / eLocation ID:
1-12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We investigated youth participation in three Community and Citizen Science (CCS) programs led by natural history museums in out-of-school settings. Using second generation Activity Theory, we looked at repeated participation over time, collecting and then qualitatively analyzing ethnographic fieldnote observations on focal youth participation and components of the activity systems. We found each program provided multiple and unique access points for youth to participate in environmental science. Further, when facilitators emphasized the scientific goals of the programs clearly and repeatedly, youth participation in the scientific processes of the CCS programs deepened. Access to scientific tools, facilitation in using them, and repeatedly applying them in authentic research, enabled youth to participate in different aspects of CCS, from exploring to submitting biological data. Repeated participation in CCS activities provided the opportunities for youth to try the same type of participation multiple times (intensification), as well as provided the opportunity for youth to try different types of participation (diversification). Our findings suggest that repeated participation in authentic scientific research in CCS contexts fosters youth development of new roles and possible development of environmental science identities. 
    more » « less
  2. Schultz, Greg; Barnes, Jonathan; Shore, Linda (Ed.)
    Growing Mathletes is an NSF-funded program that is developing a curricular model to successfully integrate growth mindset principles, baseball, and math and science concepts for youth in grades 3 to 8 in out of school learning settings. Using a Design-Based Implementation Research framework for implementing, testing, and revising a curriculum and professional learning model, we are working on best practices to support youth learning and confidence as well as facilitator training and support in both afterschool and summer programs. We present youth outcomes as evidence of successes in how the program has integrated growth mindset with other content as a way to support youth’s productive mindset in their own learning along with content gains. 
    more » « less
  3. Science kits have been a staple of learning for some time, but in the era of COVID-19 at-home science kits took specific prominence in educational initiatives. In this paper, we delineate how kit-based education can be paired with virtual connection technology to enhance postsecondary and career exploration. The “Content, Connection and Careers” kit-based program has been developed to enable youth to explore electrical engineering principles while connecting virtually with university students to discuss engineering courses and careers. When assembled and wired up, the kit components become linear motors that use a magnetic force to pull a bolt into a pipe when youth press a button. This follows the same working principles as a doorbell or solenoid. These kits are supported by virtual learning sessions where youth connect with university students and faculty to fully understand the educational content, connect to peers and caring adults to share their learning, and explore careers that use electrical engineering skills. To investigate the effectiveness of the program, surveys were distributed to participants to understand whether the kits were simple enough for independent learning but robust enough to encourage additional self-exploration of more difficult topics with the aid of expert scientists and other adult role models. Additionally, youth were asked if the connections made with university faculty and students was beneficial in their thinking of postsecondary options and college engagement. Over 60 elementary and middle-school aged youth participated in the project. Over 80 percent of survey respondents self-reported improved knowledge of how an electromagnetic field works and how to build a simple electromagnet. Other results showed an increased understanding of engineering careers and courses required to study electric engineering in college. Before their experience in the project, very few of the young people had ever talked to university faculty or university students about their areas of research or their journey into the fields of science, technology, engineering, and math (STEM). This connection was described in the surveys as what the youth liked best about the project. 
    more » « less
  4. Abstract Inspiring Girls* Expeditions is a global organization that empowers 16- to 18-year-old youth through 12-day backcountry science and art expeditions, including in the US Arctic and Subarctic. Because science and outdoor fields are historically white- and male-dominated, Inspiring Girls* follows an intersectional approach to welcome youth with marginalized genders, people of color, Indigenous people, and other marginalized groups into these arenas. Inspiring Girls* also provides professional development for early career scientist, artist, and outdoor guide instructors. We discuss how Inspiring Girls* leverages our own research as well as best practices from the literature to prioritize such strategies as intentionally building diverse teams, offering a tuition-free format, and participating in community learning to reimagine the inclusivity of science and outdoor fields in the Arctic and beyond. 
    more » « less
  5. Abstract. Atmospheric rivers (ARs) are the primary mechanism for transporting water vapor from low latitudes to polar regions, playing a significant role in extreme weather in both the Arctic and Antarctica. With the rapidly growing interest in polar ARs during the past decade, it is imperative to establish an objective framework quantifying the strength and impact of these ARs for both scientific research and practical applications. The AR scale introduced by Ralph et al. (2019) ranks ARs based on the duration of AR conditions and the intensity of integrated water vapor transport (IVT). However, the thresholds of IVT used to rank ARs are selected based on the IVT climatology at middle latitudes. These thresholds are insufficient for polar regions due to the substantially lower temperature and moisture content. In this study, we analyze the IVT climatology in polar regions, focusing on the coasts of Antarctica and Greenland. Then we introduce an extended version of the AR scale tuned to polar regions by adding lower IVT thresholds of 100, 150, and 200 kg m−1 s−1 to the standard AR scale, which starts at 250 kg m−1 s−1. The polar AR scale is utilized to examine AR frequency, seasonality, trends, and associated precipitation and surface melt over Antarctica and Greenland. Our results show that the polar AR scale better characterizes the strength and impacts of ARs in the Antarctic and Arctic regions than the original AR scale and has the potential to enhance communication across observational, research, and forecasting communities in polar regions. 
    more » « less