The Appalachian Mountains expose one of the most complete deeply exhumed orogenic belts in the world. These rocks provide the opportunity to understand tectonic processes in the mid- to lower- crust that can be linked to upper crustal processes interpreted from less exhumed orogenic belts. However, 3 Paleozoic orogenies (Taconic, Neoacadian, Alleghanian) in the southern Appalachians produced a complicated thermal-metamorphic history that is poorly understood. Recently obtained monazite U-Pb ages in the western, central, and eastern Blue Ridge of Tennessee and the Carolinas range from 459 to 441 Ma, indicating that this part of the Blue Ridge preserves Taconic (Ordovician) metamorphic mineral assemblages and were not significantly reheated during Neoacadian (Devonian) or Alleghanian (Mississippian) orogenesis. Five published garnet Sm-Nd ages from the eastern Blue Ridge in Alabama and Georgia of 331 to 320 Ma indicate widespread Alleghanian metamorphism. The northwestern extent of these Alleghanian metamorphic rocks is constrained by a garnet Sm-Nd age of 357±3 Ma from NW of the transtensional Goodwater-Enitachopco fault. However, published metamorphic age constraints are lacking SE of and along strike to the NE of the Alleghanian rocks. We report new garnet Sm-Nd ages for northern Georgia that constrain the extent of the Alleghanian metamorphic rocks. Garnet-staurolite-hornblende gneiss in the Pumpkinvine Creek Formation yields an Alleghanian age of 323±3 Ma (MSWD=6.6, N=7). To the NE, garnet-muscovite-biotite gneiss from within the structural window at Brasstown Bald and migmatiticsillimanite- and spinel-bearing garnet-biotite neiss from outside the window at Blood Mountain have ages of 446±6 (MSWD=0.7, N=4) and 448±8 (MSWD=6, N=7) Ma, respectively. These 2 indistinguishable ages confirm the premetamorphic stacking of thrust sheets exposed in the structural window. Comparison of these new ages indicates post metamorphic displacement on the Allatoona fault between the Dahlonega terrane and the western Blue Ridge. Additional garnet ages spatially distributed across the Piedmont of east central Alabama and the Murphy belt of NE Georgia extent are currently in-progress. The full data set will be used to test tectonic models including possible out-of-sequence thrusting and crustal channel flow.
more »
« less
Don't judge an orogen by its cover: Kinematics of the Appalachian décollement from seismic anisotropy
Abstract As North America collided with Africa to form Pangea during the Alleghanian orogeny, crystalline and sedimentary rocks in the southeastern United States were thrust forelandward along the Appalachian décollement. We examined Ps receiver functions to better constrain the kinematics of this prominent subsurface structure. From Southeastern Suture of the Appalachian Margin Experiment (SESAME) and other EarthScope stations on the Blue Ridge–Piedmont crystalline megathrust, we find large arrivals from a 5–10-km-deep converter. We argue that a strong contrast in dipping anisotropic foliation occurs at the subhorizontal Appalachian décollement, and propose that such a geometry may be typical for décollement structures. Conversion polarity flips can be explained by an east-dipping foliation, but this orientation is at odds with the overlying northeast-trending surface tectonic grain. We suggest that prior to late Alleghanian northwest-directed head-on collision, the Appalachian décollement accommodated early Alleghanian west-vergence, independent of the overlying Blue Ridge–Piedmont structural inheritance. The geophysical expression of dipping anisotropic foliation provides a powerful tool for investigating subsurface kinematics, especially where they are obscured by overlying fabric, to disentangle the tectonic complexities that embody oblique collisional orogens.
more »
« less
- PAR ID:
- 10411608
- Date Published:
- Journal Name:
- Geology
- Volume:
- 50
- Issue:
- 11
- ISSN:
- 0091-7613
- Page Range / eLocation ID:
- 1306 to 1311
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The southern Appalachians preserve a composite thermal and deformational history that involves at least four orogenic pulses and spans >800 Myr from the middle Mesoproterozoic to the late Paleozoic. This complex history has made the discrete separation of metamorphic and deformational events persistently challenging, particularly for Paleozoic events. To address this, we report results from a new suite of amphibole 40Ar/39Ar data from the eastern Blue Ridge and Inner Piedmont (Tugaloo and Cat Square terranes) of western North Carolina to constrain the timing of cooling from thermal conditions greater than ~550 °C. Samples were collected along an orogen-normal transect from the Newton window, near the Central Piedmont suture, to the eastern Blue Ridge, west of the Grandfather Mountain window. Amphibole gneiss from the Spruce Pine area and Wilson Creek gneiss from the Grandfather Mountain window record dates of 380 and 496 Ma, respectively. Across the Brevard Fault zone, one sample from the western Inner Piedmont Tugaloo terrane yields a date of 377 Ma. Southeast of the Brindle Creek fault in the Cat Square terrane, three samples yield dates of 344-320 Ma while two samples from Tugaloo rocks of the Newton window yield dates of 335-330 Ma. Together, these dates suggest regional cooling of the Inner Piedmont progressed from northwest to southeast following the Neoacadian orogeny. The data also indicate either that high-grade (>550 °C) Alleghanian metamorphism may have only reset the amphibole40Ar/39Ar systematics in the most southeastern parts of the Inner Piedmont, near the Central Piedmont suture, or that these high-grade Neoacadian rocks were not exhumed from the mid-crust until the Alleghanian. Additionally, our new amphibole 40Ar/39Ar dates northwest of the Brevard Fault zone are not reset during Neoacadian orogenesis. Collectively, we interpret that high-grade metamorphism in this part of the southern Appalachians must have occurred prior to the Alleghanian, placing limits on the northwesternmost extent of mid- to high-grade Alleghanian metamorphism in this part of southern Appalachians. Additional data from the Sauratown Mountains window to the northeast and South Carolina and Georgia to the southwest may further constrain the spatial extent of the Neoacadian thermal event in the southern Appalachians.more » « less
-
Abstract The Black Warrior foreland basin records sedimentation associated with the development of intersecting Ouachita and Alleghanian thrust belts along the southern margin of Laurentia. Mississippian–Pennsylvanian units in the Black Warrior basin are interpreted to be sourced from either the northern Appalachians and mid-continent or more regionally from the southern Appalachians or nearby Ouachita thrust belt. We present detrital zircon U-Pb ages and Th/U values from Paleozoic units that indicate zircon from the Mississippian Hartselle Sandstone are temporally and chemically compatible with being sourced from the southern Appalachians. Zircon mixing models suggest sediment was primarily recycled from Cambrian, Ordovician, and Devonian strata in the Appalachian Valley and Ridge, with minor influx from Piedmont units. A ca. 415 Ma zircon population requires additional input from the Maya Block of the Yucatan Peninsula or similar outboard terranes. We present zircon (U-Th)/He analysis and thermal history modeling of Paleozoic units, which detail pre-Alleghanian exhumation in the Appalachian Valley and Ridge. Both the Cambrian Chilhowee Group and Pennsylvanian Pottsville Formation exhibit (U-Th)/He dates ranging from 507 to 263 Ma with a Mississippian subset (353–329 Ma, n = 4), which indicates rapid cooling and inferred exhumation during Late Devonian–Early Mississippian Neoacadian tectonism. We propose a Mississippian drainage system that transported material along southern Appalachian structural fabrics to the juncture between Appalachian and Ouachita thrust belts followed by a sediment-routing rotation toward the Black Warrior foreland. This interpretation honors chemical-age zircon data, accounts for metamorphic grains in thin section petrography, and matches Mississippian–Pennsylvanian Black Warrior foreland lithostratigraphic relationships.more » « less
-
Abstract Oceanic detachment fault systems are characteristic of slow‐spreading mid‐ocean ridges, where reduced magma supply leads to increased extension by faulting and exhumation of oceanic core complexes (OCCs). OCCs have complicated structure reflecting the interplay between magmatic, hydrothermal, and tectonic processes. We use microearthquake data from a 9‐month ocean bottom seismometer deployment to image deformation structures in the Rainbow massif on the Mid‐Atlantic Ridge. Using a machine‐learning enabled workflow to obtain an earthquake catalog containing 68,000 events, we find seismicity occurred in distinct clusters that correlate with previously imaged velocity anomalies and dipping subsurface reflections. Our results are consistent with a dipping alteration front within the massif overlying late‐stage intrusions and suggest a transpressional fault accommodates a non‐transform offset north of the massif. Our results demonstrate OCCs continue to deform in a complex way after a detachment fault has been abandoned due to combined effects of tectonic stresses, magmatism, and alteration.more » « less
-
Abstract Using data from 186 stations belonging to the USArray Transportable Array, a three‐dimensional shear wave velocity model for the southeastern United States is constructed for the top 180 km by a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion computed from ambient noise and teleseismic earthquake data. The resulting shear wave velocity model and the crustal thickness and Vp/Vs () measurements show a clear spatial correspondence with major surficial geological features. The distinct low velocities observed in the depth range of 0–25 km beneath the eastern Gulf Coastal Plain reflect the thick layer of unconsolidated or poorly consolidated sediments atop the crystalline crust. The low(1.70–1.74) and slow lowermost crustal velocities observed beneath the eastern Southern Appalachian Mountains (including the Carolina Terrane and Inner Piedmont) relative to the adjacent Blue Ridge Mountains and Valley and Ridge can be interpreted by lower crustal delamination followed by relamination. The Osceola intrusive complex in the central Suwannee Terrane has similar crustal characteristics as the eastern Southern Appalachian Mountains and thus can similarly be attributed to crustal delamination/relamination processes. The Grenville Province and adjacent areas possess relatively highvalues which can be attributed to mafic intrusion associated with crustal extension in a recently recognized segments of the eastern arm of the Proterozoic Midcontinent Rift.more » « less
An official website of the United States government

