skip to main content


Title: Crustal and Upper Mantle Structure Beneath the Southeastern United States From Joint Inversion of Receiver Functions and Rayleigh Wave Dispersion
Abstract

Using data from 186 stations belonging to the USArray Transportable Array, a three‐dimensional shear wave velocity model for the southeastern United States is constructed for the top 180 km by a joint inversion of receiver functions and Rayleigh wave phase velocity dispersion computed from ambient noise and teleseismic earthquake data. The resulting shear wave velocity model and the crustal thickness and Vp/Vs () measurements show a clear spatial correspondence with major surficial geological features. The distinct low velocities observed in the depth range of 0–25 km beneath the eastern Gulf Coastal Plain reflect the thick layer of unconsolidated or poorly consolidated sediments atop the crystalline crust. The low(1.70–1.74) and slow lowermost crustal velocities observed beneath the eastern Southern Appalachian Mountains (including the Carolina Terrane and Inner Piedmont) relative to the adjacent Blue Ridge Mountains and Valley and Ridge can be interpreted by lower crustal delamination followed by relamination. The Osceola intrusive complex in the central Suwannee Terrane has similar crustal characteristics as the eastern Southern Appalachian Mountains and thus can similarly be attributed to crustal delamination/relamination processes. The Grenville Province and adjacent areas possess relatively highvalues which can be attributed to mafic intrusion associated with crustal extension in a recently recognized segments of the eastern arm of the Proterozoic Midcontinent Rift.

 
more » « less
Award ID(s):
1919789
NSF-PAR ID:
10371746
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
DOI PREFIX: 10.1029
Date Published:
Journal Name:
Journal of Geophysical Research: Solid Earth
Volume:
126
Issue:
10
ISSN:
2169-9313
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Shear attenuation provides insights into the physical and chemical state of the upper mantle. Yet, observations of attenuation are infrequent in the oceans, despite recent proliferation of arrays of ocean‐bottom seismometers (OBSs). Studies of attenuation in marine environments must overcome unique challenges associated with strong oceanographic noise at the seafloor and data loss during OBS recovery in addition to untangling the competing influences of elastic focusing, local site amplification, and anelastic attenuation on surface‐wave amplitudes. We apply Helmholtz tomography to OBS data to simultaneously resolve array‐averaged Rayleigh wave attenuation and maps of site amplification at periods of 20–150 s. The approach explicitly accounts for elastic focusing and defocusing due to lateral velocity heterogeneity using wavefield curvature. We validate the approach using realistic wavefield simulations at the NoMelt Experiment and Juan de Fuca (JdF) plate, which represent endmember open‐ocean and coastline‐adjacent environments, respectively. Focusing corrections are successfully recovered at both OBS arrays, including at periods <35 s at JdF where coastline effects result in strong multipathing. When applied to real data, our observations of Rayleigh wave attenuation at NoMelt and JdF revise previous estimates. At NoMelt, we observe a low attenuation lithospheric layer (> 1,500) overlying a highly attenuating asthenospheric layer (∼ 50 to 70). At JdF, we find a broad peak in attenuation (∼ 50 to 60) centered at a depth of 100–130 km. We also report strong local site amplification at the JdF Ridge (>10% at 31 s period), which can be used to refine models of crust and shallow mantle structure.

     
    more » « less
  2. Abstract

    Infrasound observations are increasingly used to constrain properties of volcanic eruptions. In order to better interpret infrasound observations, however, there is a need to better understand the relationship between eruption properties and sound generation. Here we perform two‐dimensional computational aeroacoustic simulations where we solve the compressible Navier‐Stokes equations for pure‐air with a large‐eddy simulation approximation. We simulate idealized impulsive volcanic eruptions where the exit velocity is specified and the eruption is pressure‐balanced with the atmosphere. Our nonlinear simulation results are compared with the commonly used analytical linear acoustics model of a compact monopole source radiating acoustic waves isotropically in a half space. The monopole source model matches the simulations for low exit velocities (m/s orwhereis the Mach number); however, the two solutions diverge as the exit velocity increases with the simulations developing lower peak amplitude, more rapid onset, and anisotropic radiation with stronger infrasound signals recorded above the vent than on Earth's surface. Our simulations show that interpreting ground‐based infrasound observations with the monopole source model can result in an underestimation of the erupted volume for eruptions with sonic or supersonic exit velocities. We examine nonlinear effects and show that nonlinear effects during propagation are relatively minor for the parameters considered. Instead, the dominant nonlinear effect is advection by the complex flow structure that develops above the vent. This work demonstrates the need to consider anisotropic radiation patterns and jet dynamics when interpreting infrasound observations, particularly for eruptions with sonic or supersonic exit velocities.

     
    more » « less
  3. Abstract

    The Indo‐Burma subduction zone is a highly oblique subduction system where the Indian plate is converging with the Eurasian plate. How strain is partitioned between the Indo‐Burma interface and upper plate Kabaw Fault, and whether the megathrust is a locked and active zone of convergence that can generate great earthquakes are ongoing debates. Here, we use data from a total of 68 Global Navigation Satellite System (GNSS) stations, including newly installed stations across the Kabaw Fault and compute an updated horizontal and vertical GNSS velocity field. We correct vertical rates for fluctuating seasonal signals by accounting for the elastic response of monsoon water on the crust. We model the geodetic data by inverting for 11,000 planar and non‐planar megathrust fault geometries and two geologically viable structural interpretations of the Kabaw Fault that we construct from field geological data, considering a basin‐scale wedge‐fault and a crustal‐scale reverse fault. We demonstrate that the Indo‐Burma megathrust is locked, converging at a rate ofmm/yr, and capable of hosting >8.2Mwmegathrust events. We also show that the Kabaw Fault is locked and accommodating strike‐slip motion at a rate ofmm/yr and converging at a rate ofmm/yr. Our interpretation of the geological, geophysical, and geodetic datasets indicates the Kabaw Fault is a crustal‐scale structure that actively absorbs a portion of the convergence previously ascribed to the Indo‐Burma megathrust. This reveals a previously unrecognized seismic hazard associated with the Kabaw Fault and slightly reduces the estimated hazard posed by megathrust earthquakes in the region.

     
    more » « less
  4. Abstract

    We use earthquake‐based adjoint tomography to invert for three‐dimensional structure of the North Island, New Zealand, and the adjacent Hikurangi subduction zone. The study area, having a shallow depth to the plate interface below the North Island, offers a rare opportunity for imaging material properties at an active subduction zone using land‐based measurements. Starting from an initial model derived using ray tomography, we perform iterative model updates using spectral element and adjoint simulations to fit waveforms with periods ranging from 4–30 s. We perform 28 model updates using an L‐BFGS optimization algorithm, improving data fit and introducingP‐ andS‐wave velocity changes of up to ±30%. Resolution analysis using point spread functions show that our measurements are most sensitive to heterogeneities in the upper 30 km. The most striking velocity changes coincide with areas related to the active Hikurangi subduction zone. Lateral velocity structures in the upper 5 km correlate well with New Zealand geology. The inversion reveals increased along‐strike heterogeneity on the margin. In Cook Strait we observe a low‐velocity zone interpreted as deep sedimentary basins. In the central North Island, low‐velocity anomalies are linked to surface geology, and we relate velocity structures at depth to crustal magmatic activity below the Taupō Volcanic Zone. Our velocity model provides more accurate synthetic seismograms with respect to the initial model, better constrains small (50 km), shallow (15 km) and near‐offshore velocity structures, and improves our understanding of volcanic and tectonic structures related to the active Hikurangi subduction zone.

     
    more » « less
  5. Abstract

    The effect of pressure on grain‐growth kinetics of olivine was investigated up to 10 GPa at 1773 K under relatively water‐poor conditions. The results are interpreted using a relationto obtain the activation volume = 5.0 ± 1.1 cm3/mol forn = 2 or = 5.2 ± 1.1 cm3/mol forn = 3. The small activation volume means that grain‐growth kinetics in pure olivine aggregates is fast even in the dry deep upper mantle, implying that grain‐size is controlled by the pinning by other phases or by dynamic recrystallization except for the early stage after the phase transformation from wadsleyite in upwelling materials. The present results are applied to seismic wave attenuation that is likely controlled by grain‐boundary processes. The inferred peak in attenuation just below the oceanic lithosphere‐asthenosphere boundary from the NoMelt array is difficult to be explained by the pressure effects assuming the absorption band behavior because such a model requires a much larger activation volume than determined in this work and it also fails to explain high attenuation in the deep asthenosphere. This suggests that either melt accumulation or other processes such as elastically accommodated grain‐boundary sliding (EAGBS) is responsible for the peak in attenuation. The present results are also applied to EAGBS. We suggest that the deep upper mantle is likely to be relaxed by EAGBS, which implies that the shear velocity of the deep upper mantle can be several percent smaller than that inferred from single crystal elasticity.

     
    more » « less