skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Hypergeometric Integrals Modulo p and Hasse–Witt Matrices
We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals.We also consider the same differential equations over a finite field F_p. We study the space of polynomial solutions of these differential equations over F_p, constructed in a previous work by Schechtman and the second author. Using Hasse–Witt matrices, we identify the space of these polynomial solutions over F_p with the space dual to a certain subspace of regular differentials on an associated curve. We also relate these polynomial solutions over F_p and the hypergeometric solutions over C.  more » « less
Award ID(s):
1954266 1665239
PAR ID:
10215949
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Arnold Mathematical Journal
ISSN:
2199-6792
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider the KZ differential equations over C in the case, when the hypergeometric solutions are one-dimensional integrals. We also consider the same differential equations over a finite field F_p. We study the polynomial solutions of these differential equations over F_p, constructed in a previous work joint with V. Schechtman and called the F_p-hypergeometric solutions. The dimension of the space of F_p-hypergeometric solutions depends on the prime number p. We say that the KZ equations have ample reduction for a prime p, if the dimension of the space of F_p-hypergeometric solutions is maximal possible, that is, equal to the dimension of the space of solutions of the corresponding KZ equations over C. Under the assumption of ample reduction, we prove a determinant formula for the matrix of coordinates of basis F_p-hypergeometric solutions. The formula is analogous to the corresponding formula for the determinant of the matrix of coordinates of basis complex hypergeometric solutions, in which binomials (z_i−z_j)^{M_i+M_j} are replaced with (z_i−z_j)^{Mi+Mj−p} and the Euler gamma function Γ(x) is replaced with a suitable F_p-analog defined on F_p 
    more » « less
  2. We construct polynomial solutions of the KZ differential equations over a finite field F_p as analogs of hypergeometric solutions. 
    more » « less
  3. We consider the KZ equations over C in the case, when the hypergeometric solutions are hyperelliptic integrals of genus g. Then the space of solutions is a 2g-dimensional complex vector space. We also consider the same equations modulo ps, where p is an odd prime and s is a positive integer, and over the field Q_p of p-adic numbers. We construct polynomial solutions of the KZ equations modulo ps and study the space Mps of all constructed solutions. We show that the p-adic limit of Mps as s→∞ gives us a g-dimensional vector space of solutions of the KZ equations over Qp. The solutions over Qp are power series at a certain asymptotic zone of the KZ equations. In the appendix written jointly with Steven Sperber we consider all asymptotic zones of the KZ equations in the case g=1 of elliptic integrals. The p-adic limit of Mps as s→∞ gives us a one-dimensional space of solutions over Qp at every asymptotic zone. We apply Dwork's theory and show that our germs of solutions over Qp defined at different asymptotic zones analytically continue into a single global invariant line subbundle of the associated KZ connection. Notice that the corresponding KZ connection over C does not have proper nontrivial invariant subbundles, and therefore our invariant line subbundle is a new feature of the KZ equations over Qp. We describe the Frobenius transformations of solutions of the KZ equations for g=1 and then recover the unit roots of the zeta functions of the elliptic curves defined by the equations y2=βx(x−1)(x−α) over the finite field Fp. Here α,β∈F×p,α≠1 
    more » « less
  4. The confluent hypergeometric equation, also known as Kummer's equation, is one of the most important differential equations in physics, chemistry, and engineering. Its two power series solutions are the Kummer function, M(a,b,z), often referred to as the confluent hypergeometric function of the first kind, and M ≡ z1-bM(1+a-b, 2-b,z), where a and b are parameters that appear in the differential equation. A third function, the Tricomi function, U(a,b,z), sometimes referred to as the confluent hypergeometric function of the second kind, is also a solution of the confluent hypergeometric equation that is routinely used. Contrary to common procedure, all three of these functions (and more) must be considered in a search for the two linearly independent solutions of the confluent hypergeometric equation. There are situations, when a, b, and a - b are integers, where one of these functions is not defined, or two of the functions are not linearly independent, or one of the linearly independent solutions of the differential equation is different from these three functions. Many of these special cases correspond precisely to cases needed to solve problems in physics. This leads to significant confusion about how to work with confluent hypergeometric equations, in spite of authoritative references such as the NIST Digital Library of Mathematical Functions. Here, we carefully describe all of the different cases one has to consider and what the explicit formulas are for the two linearly independent solutions of the confluent hypergeometric equation. The procedure to properly solve the confluent hypergeometric equation is summarized in a convenient table. As an example, we use these solutions to study the bound states of the hydrogenic atom, correcting the standard treatment in textbooks. We also briefly consider the cutoff Coulomb potential. We hope that this guide will aid physicists to properly solve problems that involve the confluent hypergeometric differential equation. 
    more » « less
  5. Abstract The Morse potential is an important problem to examine due to its applications in describing vibrations and bond breaking in molecules. It also shares some properties with the simpler harmonic oscillator, at the same time displaying differences, allowing for an interesting contrast to its well-studied counterpart. The solution of the Morse potential is not usually taught in a quantum mechanics class, since using differential equations makes it very tedious. Here, we illustrate how to solve the Morse potential using the Schrödinger factorization method. This operator method is a powerful tool to find the energy eigenvalues, eigenstates, and wavefunctions without using differential equations in position space, allowing us to solve more problems without requiring a discussion of hypergeometric or confluent hypergeometric functions. 
    more » « less