skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mechanical Characterization of Porcine Tricuspid Valve Anterior Leaflets Over Time: Applications to Ex Vivo Studies
Mechanical characterization of the ex vivo tricuspid valve (TV) continues to provide key insights into native valve function and the development of valvular diseases. However, experimental methods to characterize TV biomechanical behavior ex vivo often fail to account for potential changes in the tissue’s mechanical responses that may occur during experiment preparation. Therefore, we assessed the mechanical responses of the anterior tricuspid leaflet (ATL) via biaxial mechanical testing over the course of 5 h to validate the accuracy of our fresh tissue experiments. We hypothesized that ATL mechanical responses would remain consistent for the proposed time scale. We found that ATL stiffness, represented by the upper tangent modulus (UTM), did not significantly change in either the radial or circumferential directions for the 5-h test period. Similarly, no significant change was observed in radial or circumferential strains corresponding to an estimated mean systolic stress value of 85 kPa. Overall mean UTM (±standard error of the mean (SEM)) showed that ATL samples were significantly stiffer in the circumferential direction (11.3 ± 0.98 MPa) compared to the radial direction (2.29 ± 0.20 MPa) across all time points. Thus, our results indicate that the outcomes of ex vivo tricuspid valve studies requiring sample preparation up to 5 h remain reliable.  more » « less
Award ID(s):
2049088
PAR ID:
10499522
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
ASME
Date Published:
Journal Name:
ASME Open Journal of Engineering
Volume:
2
ISSN:
2770-3495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Jiang, Yi (Ed.)
    Elastin is present in the extracellular matrix (ECM) of connective tissues, and its mechanical properties are well documented. In Marfan syndrome, however, the inability to properly code for the protein fibrillin-1 prematurely leads to the degradation and loss of elastin fiber integrity in the ECM. In this study, the role of elastin in the ECM of the anterior leaflet of the tricuspid valve was investigated by examining the biomechanical behavior of porcine leaflets before and after the application of the enzyme elastase. Five loading protocols were applied to the leaflet specimens in two groups (elastase-treated and control samples). The mechanical response following elastase application yielded a significantly stiffer material in both the radial and circumferential directions. At a physiological level of stress (85 kPa), the elastase group had an average strain of 26.21% and 6.32% in the radial and circumferential directions, respectively, at baseline prior to elastase application. Following elastase treatment, the average strain was 5.28% and 0.97% in the radial and circumferential directions, respectively. No statistically significant change was found in the control group following sham treatment with phosphate-buffered saline (PBS). Two-photon microscopy images confirmed that after the removal of elastin, the collagen fibers displayed a loss of undulation. With a significant reduction in radial compliance, the ability to withstand physiological loads may be compromised. As such, an extracellular matrix that is structurally deficient in elastin may hinder normal tricuspid valve function. 
    more » « less
  2. Abstract Purpose . Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature. Methods . We performed uniaxial tensile tests up to rupture on Sylgard184, Sylgard170 and DowsilEE-3200 under different curing conditions and obtained their True (Cauchy) stress-strain behavior and Poisson’s ratios by means of digital image correlation (DIC). For each formulation, we derived the constitutive parameters of the 3-term Ogden model and designed numerical simulations of tubular models under a radial pressure of 250 mmHg. Results . Each material exhibits evident non-linear hyperelasticity and dependence on the curing condition. Sylgard184 is the stiffest formulation, with the highest shear moduli and ultimate stresses at relative low strains ( μ 184  = 0.52–0.88 MPa, σ 184  = 15.90–16.54 MPa, ε 184  = 0.72–0.96). Conversely, Sylgard170 and DowsilEE-3200 present significantly lower shear moduli and ultimate stresses that are closer to data reported for arterial tissues ( μ 170  = 0.33–0.7 MPa σ 170  = 2.61–3.67 MPa, ε 170  = 0.69–0.81; μ dow = 0.02–0.09 MPa σ dow = 0.83–2.05 MPa, ε dow = 0.91–1.05). Under radial pressure, all formulations except DowsilEE-3200 at 1:1 curing ratio undergo circumferential stresses that remain in the elastic region with values ranging from 0.1 to 0.18 MPa. Conclusion . Sylgard170 and DowsilEE-3200 appear to better reproduce the rupture behavior of vascular tissues within their typical ultimate stress and strain range. Numerical models demonstrate that all three materials achieve circumferential stresses similar to human common carotid arteries (Sommer et al 2010), making these formulations suited for cylindrical laboratory models under physiological and supraphysiological loading. 
    more » « less
  3. Abstract We examined the mechanical deformation of valve interstitial cells (VICs) in the anterior leaflet of the tricuspid valve and explored the relationship between the extracellular matrix (ECM) structure and cellular mechanics. Fresh porcine hearts were used to prepare specimens, subjected to biaxial tensile testing, and imaged using confocal microscopy with VIC nuclei staining. A multi-scale computational framework was developed to analyze cellular deformation and orientation within the ECM, using nuclear aspect ratio (NAR) as a metric. Experimental results showed that NAR values increased with mechanical loading, from 2.57±0.72 in a traction-free state to 3.4±1.29 at 130 kPa. Model predictions aligned with experimental findings. They also highlighted the significant impact of ECM fiber orientation on VIC nuclei deformation. These results indicate that mechanical forces profoundly influence cellular morphology and, potentially, their function. Further development of models is necessary to understand the complex interplay between the mechanical environment and cellular responses, crucial for identifying how mechanical forces affect tricuspid valve function and malfunction. 
    more » « less
  4. Abstract Hematopoietic progenitors are enriched in the endocardial cushion and contribute, in a Nkx2-5-dependent manner, to tissue macrophages required for the remodeling of cardiac valves and septa. However, little is known about the molecular mechanism of endocardial-hematopoietic transition. In the current study, we identified the regulatory network of endocardial hematopoiesis. Signal network analysis from scRNA-seq datasets revealed that genes in Notch and retinoic acid (RA) signaling are significantly downregulated in Nkx2-5-null endocardial cells. In vivo and ex vivo analyses validate that the Nkx2-5-Notch axis is essential for the generation of both hemogenic and cushion endocardial cells, and the suppression of RA signaling via Dhrs3 expression plays important roles in further differentiation into macrophages. Genetic ablation study revealed that these macrophages are essential in cardiac valve remodeling. In summary, the study demonstrates that the Nkx2-5/Notch/RA signaling plays a pivotal role in macrophage differentiation from hematopoietic progenitors. 
    more » « less
  5. Abstract The increasing recognition of the right ventricle (RV) necessitates the development of RV-focused interventions, devices and testbeds. In this study, we developed a soft robotic model of the right heart that accurately mimics RV biomechanics and hemodynamics, including free wall, septal and valve motion. This model uses a biohybrid approach, combining a chemically treated endocardial scaffold with a soft robotic synthetic myocardium. When connected to a circulatory flow loop, the robotic right ventricle (RRV) replicates real-time hemodynamic changes in healthy and pathological conditions, including volume overload, RV systolic failure and pressure overload. The RRV also mimics clinical markers of RV dysfunction and is validated using an in vivo porcine model. Additionally, the RRV recreates chordae tension, simulating papillary muscle motion, and shows the potential for tricuspid valve repair and replacement in vitro. This work aims to provide a platform for developing tools for research and treatment for RV pathophysiology. 
    more » « less