skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Size-dependent magnetic properties of Mn-Co-NiO based heterostructured nanoparticles
In this work, we investigate the synthesis, along with the structural and magnetic properties, of novel Mn-Co-NiO-based heterostructured nanocrystals (HNCs). The objective is to develop novel, well-structurally ordered inverted antiferromagnetic (AFM) NiO–ferrimagnetic (FiM) spinel phase overgrowth HNCs. Inverted HNCs are particularly promising for magnetic device applications because their magnetic properties are more easily controlled by having well-ordered AFM cores, which can result in magnetic structures having large coercivities, tunable blocking temperatures, and other enhanced magnetic effects. The synthesis of the HNCs is accomplished using a two-step process: In the first step, NiO nanoparticles are synthesized using a thermal decomposition method. Subsequently, Mn-Co overgrowth phases are grown on the NiO nanoparticles via hydrothermal nanophase epitaxy, using a fixed pH level (∼5.3) of the aqueous medium. This pH level was selected based on previous work in our laboratory showing that NiO/Mn 3 O 4 HNCs of constant size have optimal coercivity and exchange bias when synthesized at a pH of 5.0. The crystalline structure and gross morphology of the Mn-Co-NiO-based HNCs have been analyzed using X-ray diffraction (XRD) and Scanning Electron Microscopy (SEM) techniques, respectively. Analysis using these techniques shows that the HNCs are composed of a NiO core and a CoMn 2 O 4 overgrowth phase. Rietveld refinement of XRD data shows that the NiO core has the rocksalt (Fm[Formula: see text]m) cubic crystal structure and the CoMn 2 O 4 overgrowth has the spinel ( I4 1 / amd) crystal structure. Moreover, an increased relative amount of the CoMn 2 O 4 overgrowth phase is deposited with decreasing NiO core particle size during the synthesis of the HNCs. The results from PPMS magnetization and high-resolution transmission electron microscopy (HRTEM) characterization of the Mn-Co-NiO-based HNCs are discussed herein.  more » « less
Award ID(s):
1719875
PAR ID:
10411685
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
AIP Advances
Volume:
13
Issue:
2
ISSN:
2158-3226
Page Range / eLocation ID:
025209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bimagnetic nanoparticles show promise for applications in energy efficient magnetic storage media and magnetic device applications. The magnetic properties, including the exchange bias of nanostructured materials can be tuned by variation of the size, composition, and morphology of the core vs overlayer of the nanoparticles (NPs). The purpose of this study is to investigate the optimal synthesis routes, structure and magnetic properties of novel CoO/NiFe 2 O 4 heterostructured nanocrystals (HNCs). In this work, we aim to examine how the size impacts the exchange bias, coercivity and other magnetic properties of the CoO/NiFe 2 O 4 HNCs. The nanoparticles with sizes ranging from 10 nm to 24 nm were formed by synthesis of an antiferromagnetic (AFM) CoO core and deposition of a ferrimagnetic (FiM) NiFe 2 O 4 overlayer. A highly crystalline magnetic phase is more likely to occur when the morphology of the core-overgrowth is present, which enhances the coupling at the AFM-FiM interface. The CoO core NPs are prepared using thermal decomposition of Co(OH) 2 at 600 °C for 2 hours in a pure argon atmosphere, whereas the HNCs are obtained first using thermal evaporation followed by hydrothermal synthesis. The structural and morphological characterization made using X-ray diffraction (XRD), high-resolution transmission electron microscopy (HR-TEM), and scanning electron microscopy (SEM) techniques verifies that the HNCs are comprised of a CoO core and a NiFe 2 O 4 overgrowth phase. Rietveld refinement of the XRD data shows that the CoO core has the rocksalt (Fd3 m) crystal structure and the NiFe 2 O 4 overgrowth has the spinel (C12/m1) crystal structure. SEM-EDS data indicates the presence and uniform distribution of Co, Ni and Fe in the HNCs. The results from PPMS magnetization measurements of the CoO/NiFe 2 O 4 HNCs are discussed herein. 
    more » « less
  2. Designing high-performance nonprecious electrocatalysts to replace Pt for the oxygen reduction reaction (ORR) has been a key challenge for advancing fuel cell technologies. Here, we report a systematic study of 15 different AB 2 O 4 /C spinel nanoparticles with well-controlled octahedral morphology. The 3 most active ORR electrocatalysts were MnCo 2 O 4 /C, CoMn 2 O 4 /C, and CoFe 2 O 4 /C. CoMn 2 O 4 /C exhibited a half-wave potential of 0.89 V in 1 M KOH, equal to the benchmark activity of Pt/C, which was ascribed to charge transfer between Co and Mn, as evidenced by X-ray absorption spectroscopy. Scanning transmission electron microscopy (STEM) provided atomic-scale, spatially resolved images, and high-energy-resolution electron-loss near-edge structure (ELNES) enabled fingerprinting the local chemical environment around the active sites. The most active MnCo 2 O 4 /C was shown to have a unique Co-Mn core–shell structure. ELNES spectra indicate that the Co in the core is predominantly Co 2.7+ while in the shell, it is mainly Co 2+ . Broader Mn ELNES spectra indicate less-ordered nearest oxygen neighbors. Co in the shell occupies mainly tetrahedral sites, which are likely candidates as the active sites for the ORR. Such microscopic-level investigation probes the heterogeneous electronic structure at the single-nanoparticle level, and may provide a more rational basis for the design of electrocatalysts for alkaline fuel cells. 
    more » « less
  3. Design of hetero tri metallic molecules, especially those containing at least two different metals with close atomic numbers, radii, and the same coordination number/environment is a challenging task. This quest is greatly facilitated by having a heterobimetallic parent molecule that features multiple metal sites with only some of those displaying substitutional flexibility. Recently, a unique heterobimetallic complex LiMn 2 (thd) 5 (thd = 2,2,6,6-tetramethyl-3,5-heptanedionate) has been introduced as a single-source precursor for the preparation of a popular spinel cathode material, LiMn 2 O 4 . Theoretical calculations convincingly predict that in the above trinuclear molecule only one of the Mn sites is sufficiently flexible to be substituted with another 3d transition metal. Following those predictions, two hetero tri metallic complexes, LiMn 2−x Co x (thd) 5 ( x = 1 ( 1a ) and 0.5 ( 1b )), that represent full and partial substitution, respectively, of Co for Mn in the parent molecule, have been synthesized. X-ray structural elucidation clearly showed that only one transition metal position in the trinuclear molecule contains Co, while the other site remains fully occupied by Mn. A number of techniques have been employed for deciphering the structure and composition of hetero tri metallic compounds. Synchrotron resonant diffraction experiments unambiguously assigned 3d transition metal positions as well as provided a precise “site-specific Mn/Co elemental analysis” in a single crystal, even in an extremely difficult case of severely disordered structure formed by the superposition of two enantiomers. DART mass spectrometry and magnetic measurements clearly confirmed the presence of hetero tri metallic species LiMnCo(thd) 5 rather than a statistical mixture of two hetero bi metallic LiMn 2 (thd) 5 and LiCo 2 (thd) 5 molecules. Heterometallic precursors 1a and 1b were found to exhibit a clean decomposition yielding phase-pure LiMnCoO 4 and LiMn 1.5 Co 0.5 O 4 spinels, respectively, at the relatively low temperature of 400 °C. The latter oxide represents an important “5 V spinel” cathode material for the lithium ion batteries. Transmission electron microscopy confirmed a homogeneous distribution of transition metals in quaternary oxides obtained by pyrolysis of single-source precursors. 
    more » « less
  4. We investigate the spatial distribution of spin orientation in magnetic nanoparticles consisting of hard and soft magnetic layers. The nanoparticles are synthesized in a core–shell spherical morphology where the target stoichiometry of the magnetically hard, high anisotropy layer is CoFe2O4 (CFO), while the synthesis protocol of the lower anisotropy material is known to produce Fe3O4. The nanoparticles have a mean diameter of ∼9.2–9.6 nm and are synthesized as two variants: a conventional hard/soft core–shell structure with a CFO core/FO shell (CFO@FO) and the inverted structure FO core/CFO shell (FO@CFO). High-resolution electron microscopy confirms the coherent spinel structure across the core–shell boundary in both variants, while magnetometry indicates the nanoparticles are superparamagnetic at 300 K and develop a considerable anisotropy at reduced temperatures. Low-temperature M vs H loops suggest a multistep reversal process. Small angle neutron scattering (SANS) with full polarization analysis reveals a considerable alignment of the spins perpendicular to the field even at fields approaching saturation. The perpendicular magnetization is surprisingly correlated from one nanoparticle to the next, though the interaction is of limited range. More significantly, the SANS data reveal a pronounced difference in the reversal process of the magnetization parallel to the field for the two nanoparticle variants. For the CFO@FO nanoparticles, the core and shell magnetizations appear to track each other through the coercive region, while in the FO@CFO variant, the softer Fe3O4 core reverses before the higher anisotropy CoFe2O4 shell, consistent with expectations from mesoscale magnetic modeling. These results highlight the interplay between interfacial exchange coupling and anisotropy as a means to tune the composite properties of the nanoparticles for tailored applications including biomedical/theranostic uses. 
    more » « less
  5. La 0.7 Sr 0.2 Ni 0.2 Fe 0.8 O 3 (LSNF), having thermochemical stability, superior ionic and electronic conductivity, and structural flexibility, was investigated as a cathode in SOECs. Exsolution of nanoparticles by reduction of LSNF at elevated temperatures can modulate the characteristics of adsorption, electron transfer, and oxidation states of catalytically active atoms, consequently improving the electrocatalytic activity. The exsolution of NiFe and La 2 NiO 4 nanoparticles to the surface of LSNF under reducing atmosphere (5% H 2 /N 2 ) was verified at various temperatures (500–800 °C) by IFFT from ETEM, TPR and in situ XRD. The exsolved nanoparticles obtained uniform size distribution (4.2–9.2 nm) and dispersion (1.31 to 0.61 × 10 4 particle per μm 2 ) depending on the reduction temperature (700–800 °C) and time (0–10 h). The reoxidation of the reduced LSNF (Red-LSNF) was verified by the XRD patterns, indicative of its redox ability, which allows for redistribution of the nanoparticles between the surface and the bulk. TPD-DRIFTS analysis demonstrated that Red-LSNF had superior H 2 O and CO 2 adsorption behavior as compared to unreduced LSNF, which we attributed to the abundance of oxygen vacancy sites and the exsolved NiFe and La 2 NiO 4 nanoparticles. After the reduction of LSNF, the decreases in the oxidation states of the catalytically active ions, Fe and Ni, were characterized on the surface by XPS as well as in the bulk by XANES. The electrochemical performance of the Red-LSNF cell was superior to that of the LSNF cell for electrolysis of H 2 O, CO 2 , and H 2 O/CO 2 . 
    more » « less