skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Smallholder Knowledge of Local Climate Conditions Predicts Positive On-Farm Outcomes
Abstract People’s observations of climate change and its impacts, mediated by cultures and capacities, shape adaptive responses. Adaptation is critical in regions of rainfed smallholder agriculture where changing rainfall patterns have disproportionate impacts on livelihoods, yet scientific climate data to inform responses are often sparse. Despite calls for better integration of local knowledge into adaptation frameworks, there is a lack of empirical evidence linking both smallholder climate observations and scientific data to on-farm outcomes. We combine smallholder observations of past seasonal rainfall timing with satellite-based rainfall estimates in Uganda to explore whether farmers’ ability to track climate patterns is associated with higher crop yields. We show that high-fidelity tracking, or alignment of farmer recall with recent rainfall patterns, predicts higher yields in the present year, suggesting that farmers may translate their cumulative record of environmental knowledge into productive on-farm decisions, such as crop selection and timing of planting. However, tracking of less-recent rainfall (i.e., 1–2 decades in the past) does not predict higher yields in the present, while climate data indicate significant trends over this period toward warmer and wetter seasons. Our findings demonstrate the value of smallholder knowledge systems in filling information gaps in climate science while suggesting ways to improve adaptive capacity to climate change.  more » « less
Award ID(s):
1740201
PAR ID:
10411714
Author(s) / Creator(s):
; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Weather, Climate, and Society
Volume:
14
Issue:
3
ISSN:
1948-8327
Page Range / eLocation ID:
671 to 680
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The impact of extreme heat on crop yields is an increasingly pressing issue given anthropogenic climate warming. However, some of the physical mechanisms involved in these impacts remain unclear, impeding adaptation-relevant insight and reliable projections of future climate impacts on crops. Here, using a multiple regression model based on observational data, we show that while extreme dry heat steeply reduced U.S. corn and soy yields, humid heat extremes had insignificant impacts and even boosted yields in some areas, despite having comparably high dry-bulb temperatures as their dry heat counterparts. This result suggests that conflating dry and humid heat extremes may lead to underestimated crop yield sensitivities to extreme dry heat. Rainfall tends to precede humid but not dry heat extremes, suggesting that multivariate weather sequences play a role in these crop responses. Our results provide evidence that extreme heat in recent years primarily affected yields by inducing moisture stress, and that the conflation of humid and dry heat extremes may lead to inaccuracy in projecting crop yield responses to warming and changing humidity. 
    more » « less
  2. Mountain regions are particularly vulnerable to climate change impacts. Yet, little is known about local adaptation responses in African mountain regions, especially if these are incremental or transformational. First, using household questionnaires, we interviewed 1,500 farmers across ten African mountain regions to investigate perceived climate change impacts and adaptation responses. Second, through a reflective process involving all co-authors, we identified: (1) main constraints and opportunities for adaptation, and (2) if adaptation was incremental or transformational. Questionnaire data show that farmers in all sites perceive multiple impacts, and that they mostly respond by intensifying farming practices and using off-farm labour. We established that, while several constraints were shared across sites, others were context specific; and that adaptation was mostly incremental, but that certain attributes (for example, social capital) made three sites in East Africa slightly more transformational. 
    more » « less
  3. Effects of a changing climate on agricultural system productivity are poorly understood, and likely to be met with as yet undefined agricultural adaptations by farmers and associated business and governmental entities. The continued vitality of agricultural systems depends on economic conditions that support farmers’ livelihoods. Exploring the long-term effects of adaptations requires modeling agricultural and economic conditions to engage stakeholders upon whom the burden of any adaptation will rest. Here, we use a new freeware model FEWCalc (Food-Energy-Water Calculator) to project farm incomes based on climate, crop selection, irrigation practices, water availability, and economic adaptation of adding renewable energy production. Thus, FEWCalc addresses United Nations Global Sustainability Goals No Hunger and Affordable and Clean Energy. Here, future climate scenario impacts on crop production and farm incomes are simulated when current agricultural practices continue so that no agricultural adaptations are enabled. The model Decision Support System for Agrotechnology Transfer (DSSAT) with added arid-region dynamics is used to simulate agricultural dynamics. Demonstrations at a site in the midwest USA with 2008–2017 historical data and two 2018–2098 RCP climate scenarios provide an initial quantification of increased agricultural challenges under climate change, such as reduced crop yields and increased financial losses. Results show how this finding is largely driven by increasing temperatures and changed distribution of precipitation throughout the year. Without effective technological advances and operational and policy changes, the simulations show how rural areas could increasingly depend economically on local renewable energy, while agricultural production from arid regions declines by 50% or more. 
    more » « less
  4. null (Ed.)
    Amid climate change, biodiversity loss and food insecurity, there is the growing need to draw synergies between micro-scale environmental processes and practices, and macro-level ecosystem dynamics to facilitate conservation decision-making. Adopting this synergistic approach can improve crop yields and profitability more sustainably, enhance livelihoods and mitigate climate change. Using spatially explicit data generated through a public participatory geographic information system methodology (n = 37), complemented by spatial analysis, interviews (n = 68) and focus group discussions (n = 4), we explored the synergies between participatory farmer-to-farmer agroecology knowledge sharing, farm-level decisions and their links with macro-level prioritization of conservation strategies. We mapped farm conditions and ecosystem services (ES) of two village areas with varying knowledge systems about farming. Results of the farm-level analysis revealed variations in spatial perception among farmers, differences in understanding the dynamics of crop growth and varying priorities for extension services based on agroecological knowledge. The ES use pattern analysis revealed hotspots in the mapped ES indicators with similarities in both village areas. Despite the similarities in ES use, priorities for biodiversity conservation align with farmers’ understanding of farm processes and practices. Farmers with training in agroecology prioritized strategies that are ecologically friendly while farmers with no agroecology training prioritized the use of strict regulations. Importantly, the results show that agroecology can potentially contribute to biodiversity conservation and food security, with climate change mitigation co-benefits. The findings generally contribute to debates on land sparing and land sharing conservation strategies and advance social learning theory as it pertains to acquiring agroecological knowledge for improved yield and a sustainable environment. 
    more » « less
  5. Artificial General Intelligence (AGI) is poised to revolutionize a variety of sectors, including healthcare, finance, transportation, and education. Within healthcare, AGI is being utilized to analyze clinical medical notes, recognize patterns in patient data, and aid in patient management. Agriculture is another critical sector that impacts the lives of individuals worldwide. It serves as a foundation for providing food, fiber, and fuel, yet faces several challenges, such as climate change, soil degradation, water scarcity, and food security. AGI has the potential to tackle these issues by enhancing crop yields, reducing waste, and promoting sustainable farming practices. It can also help farmers make informed decisions by leveraging real-time data, leading to more efficient and effective farm management. This paper delves into the potential future applications of AGI in agriculture, such as agriculture image processing, natural language processing (NLP), robotics, knowledge graphs, and infrastructure, and their impact on precision livestock and precision crops. By leveraging the power of AGI, these emerging technologies can provide farmers with actionable insights, allowing for optimized decision-making and increased productivity. The transformative potential of AGI in agriculture is vast, and this paper aims to highlight its potential to revolutionize the industry. 
    more » « less