skip to main content


Title: Broadband subwavelength imaging of flexural elastic waves in flat phononic crystal lenses
Abstract

Subwavelength imaging of elastic/acoustic waves using phononic crystals (PCs) is limited to a narrow frequency range via the two existing mechanisms that utilize either the intense Bragg scattering in the first phonon band or negative effective properties (left-handed material) in the second (or higher) phonon band. In the first phonon band, the imaging phenomenon can only exist at frequencies closer to the first Bragg band gap where the equal frequency contours (EFCs) are convex. Whereas, for the left-handed materials, the subwavelength imaging is restricted to a narrow frequency region where wave vectors in PC and background material are close to each other, which is essential for single-point image formation. In this work, we propose a PC lens for broadband subwavelength imaging of flexural waves in plates exploiting the second phonon band and the anisotropy of a PC lattice for the first time. Using a square lattice design with square-shaped EFCs, we enable the group velocity vector to always be perpendicular to the lens interface irrespective of the frequency and incidence angle; thus, resulting in a broadband imaging capability. We numerically and experimentally demonstrate subwavelength imaging using this concept over a significantly broadband frequency range.

 
more » « less
Award ID(s):
1914583
NSF-PAR ID:
10411768
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Scientific Reports
Volume:
13
Issue:
1
ISSN:
2045-2322
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We numerically and experimentally demonstrate super-resolution focusing of the lowest anti-symmetric (A0) mode Lamb waves in a thin aluminum plate. The subwavelength focusing/imaging is achieved by exploiting the anisotropy in phononic crystal (PC) lattices and amplification of evanescent waves. To this end, we embedded a PC flat lens in the aluminum plate, consisting of holes arranged in a square lattice formation. We revealed that the bound slab phonon modes amplify evanescent waves, as previously observed for electromagnetic and acoustic waves. Hence, the slab mode helps propagate subwavelength information through the PC lens to reach the near-field image formed due to negative refraction and result in the high resolution image. 
    more » « less
  2. Abstract

    Whistler waves are often observed in magnetopause reconnection associated with electron beams. We analyze seven MMS crossings surrounding the electron diffusion region (EDR) to study the role of electron beams in whistler excitation. Waves have two major types: (a) Narrow‐band waves with high ellipticities and (b) broad‐band waves that are more electrostatic with significant variations in ellipticities and wave normal angles. While both types of waves are associated with electron beams, the key difference is the anisotropy of the background population, with perpendicular and parallel anisotropies, respectively. The linear instability analysis suggests that the first type of wave is mainly due to the background anisotropy, with the beam contributing additional cyclotron resonance to enhance the wave growth. The second type of broadband waves are excited via Landau resonance, and as seen in one event, the beam anisotropy induces an additional cyclotron mode. The results are supported by particle‐in‐cell simulations. We infer that the first type occurs downstream of the central EDR, where background electrons experience Betatron acceleration to form the perpendicular anisotropy; the second type occurs in the central EDR of guide field reconnection. A parametric study is conducted with linear instability analysis. A beam anisotropy alone of above ∼3 likely excites the cyclotron mode waves. Large beam drifts cause Doppler shifts and may lead to left‐hand polarizations in the ion frame. Future studies are needed to determine whether the observation covers a broader parameter regime and to understand the competition between whistler and other instabilities.

     
    more » « less
  3. Abstract

    Hyperbolic phonon polaritons (HPhPs) are stimulated by coupling infrared (IR) photons with the polar lattice vibrations. Such HPhPs offer low‐loss, highly confined light propagation at subwavelength scales with out‐of‐plane or in‐plane hyperbolic wavefronts. For HPhPs, while a hyperbolic dispersion implies multiple propagating modes with a distribution of wavevectors at a given frequency, so far it has been challenging to experimentally launch and probe the higher‐order modes that offer stronger wavelength compression, especially for in‐plane HPhPs. In this work, the experimental observation of higher‐order in‐plane HPhP modes stimulated on a 3C‐SiC nanowire (NW)/α‐MoO3heterostructure is reported where leveraging both the low‐dimensionality and low‐loss nature of the polar NWs, higher‐order HPhPs modes within 2D α‐MoO3crystal are launched by the 1D 3C‐SiC NW. The launching mechanism is further studied and the requirements for efficiently launching of such higher‐order modes are determined. In addition, by altering the geometric orientation between the 3C‐SiC NW and α‐MoO3crystal, the manipulation of higher‐order HPhP dispersions as a method of tuning is demonstrated. This work illustrates an extremely anisotropic low dimensional heterostructure platform to confine and configure electromagnetic waves at the deep‐subwavelength scales for a range of IR applications including sensing, nano‐imaging, and on‐chip photonics.

     
    more » « less
  4. While elastic metasurfaces offer a remarkable and very effective approach to the subwavelength control of stress waves, their use in practical applications is severely hindered by intrinsically narrow band performance. In applications to electromagnetic and photonic metamaterials, some success in extending the operating dynamic range was obtained by using nonlocality. However, while electronic properties in natural materials can show significant nonlocal effects, even at the macroscales, in mechanics, nonlocality is a higher-order effect that becomes appreciable only at the microscales. This study introduces the concept of intentional nonlocality as a fundamental mechanism to design passive elastic metasurfaces capable of an exceptionally broadband operating range. The nonlocal behavior is achieved by exploiting nonlocal forces, conceptually akin to long-range interactions in nonlocal material microstructures, between subsets of resonant unit cells forming the metasurface. These long-range forces are obtained via carefully crafted flexible elements, whose specific geometry and local dynamics are designed to create remarkably complex transfer functions between multiple units. The resulting nonlocal coupling forces enable achieving phase-gradient profiles that are functions of the wavenumber of the incident wave. The identification of relevant design parameters and the assessment of their impact on performance are explored via a combination of semianalytical and numerical models. The nonlocal metasurface concept is tested, both numerically and experimentally, by embedding a total-internal-reflection design in a thin-plate waveguide. Results confirm the feasibility of the intentionally nonlocal design concept and its ability to achieve a fully passive and broadband wave control.

     
    more » « less
  5. BACKGROUND Electromagnetic (EM) waves underpin modern society in profound ways. They are used to carry information, enabling broadcast radio and television, mobile telecommunications, and ubiquitous access to data networks through Wi-Fi and form the backbone of our modern broadband internet through optical fibers. In fundamental physics, EM waves serve as an invaluable tool to probe objects from cosmic to atomic scales. For example, the Laser Interferometer Gravitational-Wave Observatory and atomic clocks, which are some of the most precise human-made instruments in the world, rely on EM waves to reach unprecedented accuracies. This has motivated decades of research to develop coherent EM sources over broad spectral ranges with impressive results: Frequencies in the range of tens of gigahertz (radio and microwave regimes) can readily be generated by electronic oscillators. Resonant tunneling diodes enable the generation of millimeter (mm) and terahertz (THz) waves, which span from tens of gigahertz to a few terahertz. At even higher frequencies, up to the petahertz level, which are usually defined as optical frequencies, coherent waves can be generated by solid-state and gas lasers. However, these approaches often suffer from narrow spectral bandwidths, because they usually rely on well-defined energy states of specific materials, which results in a rather limited spectral coverage. To overcome this limitation, nonlinear frequency-mixing strategies have been developed. These approaches shift the complexity from the EM source to nonresonant-based material effects. Particularly in the optical regime, a wealth of materials exist that support effects that are suitable for frequency mixing. Over the past two decades, the idea of manipulating these materials to form guiding structures (waveguides) has provided improvements in efficiency, miniaturization, and production scale and cost and has been widely implemented for diverse applications. ADVANCES Lithium niobate, a crystal that was first grown in 1949, is a particularly attractive photonic material for frequency mixing because of its favorable material properties. Bulk lithium niobate crystals and weakly confining waveguides have been used for decades for accessing different parts of the EM spectrum, from gigahertz to petahertz frequencies. Now, this material is experiencing renewed interest owing to the commercial availability of thin-film lithium niobate (TFLN). This integrated photonic material platform enables tight mode confinement, which results in frequency-mixing efficiency improvements by orders of magnitude while at the same time offering additional degrees of freedom for engineering the optical properties by using approaches such as dispersion engineering. Importantly, the large refractive index contrast of TFLN enables, for the first time, the realization of lithium niobate–based photonic integrated circuits on a wafer scale. OUTLOOK The broad spectral coverage, ultralow power requirements, and flexibilities of lithium niobate photonics in EM wave generation provides a large toolset to explore new device functionalities. Furthermore, the adoption of lithium niobate–integrated photonics in foundries is a promising approach to miniaturize essential bench-top optical systems using wafer scale production. Heterogeneous integration of active materials with lithium niobate has the potential to create integrated photonic circuits with rich functionalities. Applications such as high-speed communications, scalable quantum computing, artificial intelligence and neuromorphic computing, and compact optical clocks for satellites and precision sensing are expected to particularly benefit from these advances and provide a wealth of opportunities for commercial exploration. Also, bulk crystals and weakly confining waveguides in lithium niobate are expected to keep playing a crucial role in the near future because of their advantages in high-power and loss-sensitive quantum optics applications. As such, lithium niobate photonics holds great promise for unlocking the EM spectrum and reshaping information technologies for our society in the future. Lithium niobate spectral coverage. The EM spectral range and processes for generating EM frequencies when using lithium niobate (LN) for frequency mixing. AO, acousto-optic; AOM, acousto-optic modulation; χ (2) , second-order nonlinearity; χ (3) , third-order nonlinearity; EO, electro-optic; EOM, electro-optic modulation; HHG, high-harmonic generation; IR, infrared; OFC, optical frequency comb; OPO, optical paramedic oscillator; OR, optical rectification; SCG, supercontinuum generation; SHG, second-harmonic generation; UV, ultraviolet. 
    more » « less