Lithium-sulfur batteries represent an attractive option for energy storage applications. A deeper understanding of the multistep lithium-sulfur reactions and the electrocatalytic mechanisms are required to develop advanced, high-performance batteries. We have systematically investigated the lithium-sulfur redox processes catalyzed by a cobalt single-atom electrocatalyst (Co-SAs/NC) via operando confocal Raman microscopy and x-ray absorption spectroscopy (XAS). The real-time observations, based on potentiostatic measurements, indicate that Co-SAs/NC efficiently accelerates the lithium-sulfur reduction/oxidation reactions, which display zero-order kinetics. Under galvanostatic discharge conditions, the typical stepwise mechanism of long-chain and intermediate-chain polysulfides is transformed to a concurrent pathway under electrocatalysis. In addition, operando cobalt K-edge XAS studies elucidate the potential-dependent evolution of cobalt’s oxidation state and the formation of cobalt-sulfur bonds. Our work provides fundamental insights into the mechanisms of catalyzed lithium-sulfur reactions via operando methods, enabling a deeper understanding of electrocatalysis and interfacial dynamics in electrical energy storage systems.
more »
« less
Understanding the lithium–sulfur battery redox reactions via operando confocal Raman microscopy
Abstract The complex interplay and only partial understanding of the multi-step phase transitions and reaction kinetics of redox processes in lithium–sulfur batteries are the main stumbling blocks that hinder the advancement and broad deployment of this electrochemical energy storage system. To better understand these aspects, here we report operando confocal Raman microscopy measurements to investigate the reaction kinetics of Li–S redox processes and provide mechanistic insights into polysulfide generation/evolution and sulfur deposition. Operando visualization and quantification of the reactants and intermediates enabled the characterization of potential-dependent rates during Li–S redox and the linking of the electronic conductivity of the sulfur-based electrode and concentrations of polysulfides to the cell performance. We also report the visualization of the interfacial evolution and diffusion processes of different polysulfides that demonstrate stepwise discharge and parallel recharge mechanisms during cell operation. These results provide fundamental insights into the mechanisms and kinetics of Li–S redox reactions.
more »
« less
- Award ID(s):
- 1719875
- PAR ID:
- 10411979
- Date Published:
- Journal Name:
- Nature Communications
- Volume:
- 13
- Issue:
- 1
- ISSN:
- 2041-1723
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The shuttling of polysulfides with sluggish redox kinetics has severely retarded the advancement of lithium–sulfur (Li–S) batteries. In this work oxygen-deficient titanium dioxide (TiO 2 ) has been investigated as a novel functional host for Li–S batteries. Experimental and first-principles density functional theory (DFT) studies reveal that oxygen vacancies help to reduce polysulfide shuttling and catalyze the redox kinetics of sulfur/polysulfides during cycling. Consequently, the resulting TiO 2 /S composite cathode manifests superior electrochemical properties in terms of high capacity (1472 mA h g −1 at 0.2C), outstanding rate capability (571 mA h g −1 at 2C), and excellent cycling properties (900 mA h g −1 over 100 cycles at 0.2C). The present strategy offers a viable way through vacancy engineering for the design and optimization of high-performance electrodes for advanced Li–S batteries and other electrochemical devices.more » « less
-
Lithium–sulfur (Li–S) batteries have great potential as next generation energy storage devices. However, the redox chemistry mechanism involves the generation of solubilized lithium polysulfides, which can lead to leaching of the active material and, consequently, passivated electrodes and diminished capacities. Chemical tethering of lithium polysulfides to materials in the sulfur cathode is a promising approach for resolving this issue in Li–S batteries. Borrowing from the field of synthetic chemistry, we utilize maleimide functional groups in a Zr-based metal–organic framework to chemically interact with polysulfides through the Michael Addition reaction. A combination of molecular and solid-state spectroscopies confirms covalent attachment of Li 2 S x to the maleimide functionality. When integrated into Li–S cathodes, the maleimide-functionalized framework exhibits notable performance enhancements over that of the unfunctionalized material, revealing the promise of polysulfide anchors for Li–S battery cycling.more » « less
-
Many transition-metal-oxide-based catalysts have been investigated to chemically bind soluble lithium polysulfides and accelerate their redox kinetics in lithium-sulfur (Li-S) battery chemistry. However, the intrinsic poor electrical conductivities of these oxides restrict their catalytic performance, consequently limiting the sulfur utilization and the rate performance of Li-S batteries. Herein, we report a freestanding electrocatalytic sulfur host consisting of hydrogen-treated VO2 nanoparticles (H-VO2) anchored on nitrogen-doped carbonized bacterial cellulose aerogels (N-CBC). The hydrogen treatment enables the formation and stabilization of the rutile VO2(R) phase with metallic conductivity at room temperature, significantly enhancing its catalytic capability compared to the as-synthesized insulative VO2(M) phase. Several measurements characterize the electrocatalytic performance of this unique H-VO2@N-CBC structure. In particular, the two kinetic barriers between S8, polysulfides, and Li2S are largely reduced by 28.2 and 43.3 kJ/mol, respectively. Accordingly, the Li-S battery performance, in terms of sulfur utilization and charge/discharge rate, is greatly improved. This work suggests an effective strategy to develop conductive catalysts based on a typical transition metal oxide (VO2) for Li-S batteries.more » « less
-
Deducing the electrochemical activity of intermediates and providing materials solution to alter their reaction pathways holds the key for developing advanced energy storage systems such as lithium-sulfur (Li-S) batteries. Herein, we provide mechanistic perspectives of the substrate guided reaction pathways of intermediate polysulfides and their correlation to the redox activity of discharge end products using In Situ atomic force microscopy-based scanning electrochemical microscopy (AFM-SECM) coupled Raman spectroscopy at nanoscale spatiotemporal resolution. In Situ SECM intermediate detection along with Raman analysis at the electrode/electrolyte interface reveals that the precipitation of Li 2 S can occur via an electrochemically active lithium disulfide (Li 2 S 2 ) intermediate step. With a detailed spectro-electrochemical and morphological mapping, we decipher that the substrate-dependent Li 2 S 2 formation adversely affects the Li 2 S oxidation in the subsequent cycles, thereby reducing the round-trip efficiency and overall performance of the cell. The present study provides nanoscale-resolved information regarding the polysulfide reaction pathways in Li-S batteries with respect to the electrode structure and its properties.more » « less
An official website of the United States government

