In light of the recent Jefferson Laboratory (JLab) data for the nuclear 12C(e,e′p) transparencies, calculations, obtained in a relativistic multiple scattering Glauber approximation, are discussed. The shell-separated 12C transparencies are shown and it is concluded that the p-shell nucleons are 75% more transparent than the s-shell ones. The presented comparisons between the calculations made here and the current 12C(e,e′p) data show no clear indication for the onset of color transparency when implemented within the color diffusion model with standard parameters.
more »
« less
Searching for an Enhanced Signal of the Onset of Color Transparency in Baryons with D(e,e′p)n Scattering
Observation of the onset of color transparency in baryons would provide a new means of studying the nuclear strong force and would be the first clear evidence of baryons transforming into a color-neutral point-like size in the nucleus as predicted by quantum chromodynamics. Recent C(e,e′p) results from electron-scattering did not observe the onset of color transparency (CT) in protons up to spacelike four-momentum transfers squared, Q2=14.2 GeV2. The traditional methods of searching for CT in (e,e′p) scattering use heavy targets favoring kinematics with already initially reduced final state interactions (FSIs) such that any CT effect that further reduces FSIs will be small. The reasoning behind this choice is the difficulty in accounting for all FSIs. D(e,e′p)n, on the other hand, has well-understood FSI contributions from double scattering with a known dependence on the kinematics and can show an increased sensitivity to hadrons in point-like configurations. Double scattering is the square of the re-scattering amplitude in which the knocked-out nucleon interacts with the spectator nucleon, a process that is suppressed in the presence of point-like configurations and is particularly well-studied for the deuteron. This suppression yields a quadratic sensitivity to CT effects and is strongly dependent on the choice of kinematics. Here, we describe a possible Jefferson National Accelerator Facility (JLab) electron-scattering experiment that utilizes these kinematics and explores the potential signal for the onset of CT with enhanced sensitivity as compared to recent experiments.
more »
« less
- Award ID(s):
- 2111442
- PAR ID:
- 10412058
- Date Published:
- Journal Name:
- Physics
- Volume:
- 4
- Issue:
- 4
- ISSN:
- 2624-8174
- Page Range / eLocation ID:
- 1426 to 1439
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The paper proposes to study the onset of color transparency in hard exclusive reactions in the backward regime. Guided by the encouraging Jefferson Laboratory (JLab) results on backward π and ω electroproduction data at moderate virtuality Q2, which may be interpreted as the signal of an early scaling regime, where the scattering amplitude factorizes in a hard coefficient function convoluted with nucleon to meson transition distribution amplitudes, the study shows that investigations of these channels on nuclear targets opens a new opportunity to test the appearance of nuclear color transparency for a fast-moving nucleon.more » « less
-
null (Ed.)Quasielastic C12(e,e′p) scattering was measured at spacelike 4-momentum transfer squared Q2=8, 9.4, 11.4, and 14.2 (GeV/c)2, the highest ever achieved to date. Nuclear transparency for this reaction was extracted by comparing the measured yield to that expected from a plane-wave impulse approximation calculation without any final state interactions. The measured transparency was consistent with no Q2 dependence, up to proton momenta of 8.5 GeV/c, ruling out the quantum chromodynamics effect of color transparency at the measured Q2 scales in exclusive (e,e′p) reactions. These results impose strict constraints on models of color transparency for protons.more » « less
-
Abstract The target normal single-spin asymmetry in electron nucleon scattering is studied in the framework of the 1/Nc expansion of QCD, which allows for a rigorous description in the energy range that includes the Δ resonance and below the second baryon resonance region. The asymmetry is driven by the absorptive part of the two-photon exchange component of the scattering amplitude, being therefore the most unambiguous two-photon exchange effect. Such amplitude is shown to be described up to the next to leading order in the 1/Nc expansion only in terms of the charge and magnetic form factors of the nucleons, a consequence of the approximate SU(4) spin flavor symmetry valid in the large Nc limit for baryons. A discussion is provided of the 1/Nc expansion framework along with the results for the asymmetries in elastic (e−N↑→e−N), inelastic (e−N↑→e−Δ), and inclusive scattering.more » « less
-
The first search for double charged charmonium-like state production in decays and in e^{+} e^{-} annihilation at \sqrt{s}= 10.52, 10.58, and 10.867 GeV is conducted using data collected with the Belle detector at the KEKB asymmetric energy electron-positron collider. No significant signals are observed in any of the studied modes.more » « less
An official website of the United States government

