skip to main content


Title: Stability and bifurcation of dynamic contact lines in two dimensions
The moving contact line between a fluid, liquid and solid is a ubiquitous phenomenon, and determining the maximum speed at which a liquid can wet/dewet a solid is a practically important problem. Using continuum models, previous studies have shown that the maximum speed of wetting/dewetting can be found by calculating steady solutions of the governing equations and locating the critical capillary number, $Ca_{{crit}}$ , above which no steady-state solution can be found. Below $Ca_{{crit}}$ , both stable and unstable steady-state solutions exist and if some appropriate measure of these solutions is plotted against $Ca$ , a fold bifurcation appears where the stable and unstable branches meet. Interestingly, the significance of this bifurcation structure to the transient dynamics has yet to be explored. This article develops a computational model and uses ideas from dynamical systems theory to show the profound importance of the unstable solutions on the transient behaviour. By perturbing the stable state by the eigenmodes calculated from a linear stability analysis it is shown that the unstable branch is an ‘edge’ state that is responsible for the eventual dynamical outcomes and that the system can become transient when $Ca< Ca_{{crit}}$ due to finite-amplitude perturbations. Furthermore, when $Ca>Ca_{{crit}}$ , we show that the trajectories in phase space closely follow the unstable branch.  more » « less
Award ID(s):
1935968
NSF-PAR ID:
10412211
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
945
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We study bubble motion in a vertical capillary tube under an external flow. Bretherton ( J. Fluid Mech. , vol. 10, issue 2, 1961, pp. 166–188) has shown that, without external flow, a bubble can spontaneously rise when the Bond number ( ${Bo} \equiv \rho g R^2 / \gamma$ ) is above the critical value ${Bo}_{cr}=0.842$ , where $\rho$ is the liquid density, $g$ the gravitational acceleration, $R$ the tube radius and $\gamma$ the surface tension. It was then shown by Magnini et al. ( Phys. Rev. Fluids , vol. 4, issue 2, 2019, 023601) that the presence of an imposed liquid flow, in the same (upward) direction as buoyancy, accelerates the bubble and thickens the liquid film around it. In this work we carry out a systematic study of the bubble motion under a wide range of upward and downward external flows, focusing on the inertialess regime with Bond numbers above the critical value. We show that a rich variety of bubble dynamics occurs when an external downward flow is applied, opposing the buoyancy-driven rise of the bubble. We reveal the existence of a critical capillary number of the external downward flow ( ${Ca}_l \equiv \mu U_l/\gamma$ , where $\mu$ is the fluid viscosity and $U_l$ is the mean liquid speed) at which the bubble arrests and changes its translational direction. Depending on the relative direction of gravity and the external flow, the thickness of the film separating the bubble surface and the tube inner wall follows two distinct solution branches. The results from theory, experiments and numerical simulations confirm the existence of the two solution branches and reveal that the two branches overlap over a finite range of ${Ca}_l$ , thus suggesting non-unique, history-dependent solutions for the steady-state film thickness under the same external flow conditions. Furthermore, inertialess symmetry-breaking shape profiles at steady state are found as the bubble transits near the tipping points of the solution branches, which are shown in both experiments and three-dimensional numerical simulations. 
    more » « less
  2. ABSTRACT We revisit the question of ‘hot mode’ versus ‘cold mode’ accretion on to galaxies using steady-state cooling flow solutions and idealized 3D hydrodynamic simulations. We demonstrate that for the hot accretion mode to exist, the cooling time is required to be longer than the free-fall time near the radius where the gas is rotationally supported, Rcirc, i.e. the existence of the hot mode depends on physical conditions at the galaxy scale rather than on physical conditions at the halo scale. When allowing for the depletion of the halo baryon fraction relative to the cosmic mean, the longer cooling times imply that a virialized gaseous halo may form in halo masses below the threshold of $\sim 10^{12}\, {\rm M_{\odot }}$ derived for baryon-complete haloes. We show that for any halo mass there is a maximum accretion rate for which the gas is virialized throughout the halo and can accrete via the hot mode of ${\dot{M}}_{\rm crit}\approx 0.7(v_{\rm c}/100\, \rm km\ s^{-1})^{5.4}(R_{\rm circ}/10\, {\rm kpc})(Z/\, {\rm Z_{\odot }})^{-0.9}\, {\rm M_{\odot }}\, {\rm yr}^{-1}$, where Z and vc are the metallicity and circular velocity measured at Rcirc. For accretion rates $\gtrsim {\dot{M}}_{\rm crit}$ the volume-filling gas phase can in principle be ‘transonic’ – virialized in the outer halo but cool and free-falling near the galaxy. We compare ${\dot{M}}_{\rm crit}$ to the average star formation rate (SFR) in haloes at 0 < z < 10 implied by the stellar-mass–halo-mass relation. For a plausible metallicity evolution with redshift, we find that ${\rm SFR}\lesssim {\dot{M}}_{\rm crit}$ at most masses and redshifts, suggesting that the SFR of galaxies could be primarily sustained by the hot mode in halo masses well below the classic threshold of $\sim 10^{12}\, {\rm M_{\odot }}$. 
    more » « less
  3. null (Ed.)
    Artificial intelligence methods such as fuzzy logic and particle swarm optimization (PSO) have been applied to maximum power point tracking (MPPT) for solar panels. The P-V curve of a solar panel exhibits multiple peaks under partial shading condition (PSC) when all modules of a solar panel do not receive the same solar irradiation. Although conventional PSO has been shown to perform well under uniform insolation, it is often unable to find the global maximum power point under PSC. Fuzzy adaptive PSO controllers have been proposed for MPPT. However, the controller became computation-intensive in order to adjust the PSO parameters for each particle. In this paper, fuzzy adaptive PSO-based and conventional PSO-based MPPT are compared and evaluated in the aspect of design and performance. A simple fuzzy adaptive PSO controller for MPPT was designed to reach the global optimal point under PSC and uniform irradiation. The controller combines the advantages of both PSO and fuzzy control. The fuzzy controller dynamically adjusts the PSO parameter to improve the convergence speed and global search capability. Since tuning of the PSO parameter is designed to be common for all particles, it reduced the computation complexity. The fuzzy controller’s rule base is designed to obtain a fast transient response and stable steady state response. Design of the fuzzy adaptive PSO-based MPPT is verified with simulation results using a boost converter. The results are evaluated in comparison to the results using a conventional PSO controller under PSC. Simulation shows the fuzzy adaptive PSO-based MPPT is able to improve the global search process and increase the convergency speed. The comparison indicates the settling time using the fuzzy adaptive PSO-based MPPT is 14% faster under PSC on average and 30% faster under uniform irradiation than the settling time using the conventional PSO. Both the fuzzy adaptive and conventional PSO controllers have similar output power tracking accuracy. 
    more » « less
  4. Abstract In this article, the recently discovered phenomenon of delayed Hopf bifurcations (DHB) in reaction–diffusion partial differential equations (PDEs) is analysed in the cubic Complex Ginzburg–Landau equation, as an equation in its own right, with a slowly varying parameter. We begin by using the classical asymptotic methods of stationary phase and steepest descents on the linearized PDE to show that solutions, which have approached the attracting quasi-steady state (QSS) before the Hopf bifurcation remain near that state for long times after the instantaneous Hopf bifurcation and the QSS has become repelling. In the complex time plane, the phase function of the linearized PDE has a saddle point, and the Stokes and anti-Stokes lines are central to the asymptotics. The non-linear terms are treated by applying an iterative method to the mild form of the PDE given by perturbations about the linear particular solution. This tracks the closeness of solutions near the attracting and repelling QSS in the full, non-linear PDE. Next, we show that beyond a key Stokes line through the saddle there is a curve in the space-time plane along which the particular solution of the linear PDE ceases to be exponentially small, causing the solution of the non-linear PDE to diverge from the repelling QSS and exhibit large-amplitude oscillations. This curve is called the space–time buffer curve. The homogeneous solution also stops being exponentially small in a spatially dependent manner, as determined also by the initial data and time. Hence, a competition arises between these two solutions, as to which one ceases to be exponentially small first, and this competition governs spatial dependence of the DHB. We find four different cases of DHB, depending on the outcomes of the competition, and we quantify to leading order how these depend on the main system parameters, including the Hopf frequency, initial time, initial data, source terms, and diffusivity. Examples are presented for each case, with source terms that are a uni-modal function, a smooth step function, a spatially periodic function and an algebraically growing function. Also, rich spatio-temporal dynamics are observed in the post-DHB oscillations. Finally, it is shown that large-amplitude source terms can be designed so that solutions spend substantially longer times near the repelling QSS, and hence, region-specific control over the delayed onset of oscillations can be achieved. 
    more » « less
  5. null (Ed.)
    Abstract We study steady-state thin films on chemically heterogeneous substrates of finite size, subject to no-flux boundary conditions. Based on the structure of the bifurcation diagram, we classify the 1D steady-state solutions that exist on such substrates into six different branches and develop asymptotic estimates for the steady states on each branch. Using perturbation expansions, we show that leading-order solutions provide good predictions of the steady-state thin films on stepwise-patterned substrates. We show how the analysis in one dimension can be extended to axisymmetric solutions. We also examine the influence of the wettability contrast of the substrate pattern on the linear stability of droplets and the time evolution for dewetting on small domains. Results are also applied to describe 2D droplets on hydrophilic square patches and striped regions used in microfluidic applications. 
    more » « less