skip to main content


Title: Improving the Arrival Time Estimates of Coronal Mass Ejections by Using Magnetohydrodynamic Ensemble Modeling, Heliospheric Imager Data, and Machine Learning
Abstract

The arrival time prediction of coronal mass ejections (CMEs) is an area of active research. Many methods with varying levels of complexity have been developed to predict CME arrival. However, the mean absolute error (MAE) of predictions remains above 12 hr, even with the increasing complexity of methods. In this work we develop a new method for CME arrival time prediction that uses magnetohydrodynamic simulations involving data-constrained flux-rope-based CMEs, which are introduced in a data-driven solar wind background. We found that for six CMEs studied in this work the MAE in arrival time was ∼8 hr. We further improved our arrival time predictions by using ensemble modeling and comparing the ensemble solutions with STEREO-A and STEREO-B heliospheric imager data. This was done by using our simulations to create synthetic J-maps. A machine-learning (ML) method called the lasso regression was used for this comparison. Using this approach, we could reduce the MAE to ∼4 hr. Another ML method based on the neural networks (NNs) made it possible to reduce the MAE to ∼5 hr for the cases when HI data from both STEREO-A and STEREO-B were available. NNs are capable of providing similar MAE when only the STEREO-A data are used. Our methods also resulted in very encouraging values of standard deviation (precision) of arrival time. The methods discussed in this paper demonstrate significant improvements in the CME arrival time predictions. Our work highlights the importance of using ML techniques in combination with data-constrained magnetohydrodynamic modeling to improve space weather predictions.

 
more » « less
Award ID(s):
2028154
PAR ID:
10412371
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
DOI PREFIX: 10.3847
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
948
Issue:
2
ISSN:
0004-637X
Format(s):
Medium: X Size: Article No. 78
Size(s):
Article No. 78
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Flux-rope-based magnetohydrodynamic modeling of coronal mass ejections (CMEs) is a promising tool for prediction of the CME arrival time and magnetic field at Earth. In this work, we introduce a constant-turn flux rope model and use it to simulate the 2012 July 12 16:48 CME in the inner heliosphere. We constrain the initial parameters of this CME using the graduated cylindrical shell (GCS) model and the reconnected flux in post-eruption arcades. We correctly reproduce all the magnetic field components of the CME at Earth, with an arrival time error of approximately 1 hr. We further estimate the average subjective uncertainties in the GCS fittings by comparing the GCS parameters of 56 CMEs reported in multiple studies and catalogs. We determined that the GCS estimates of the CME latitude, longitude, tilt, and speed have average uncertainties of 5.°74, 11.°23, 24.°71, and 11.4%, respectively. Using these, we have created 77 ensemble members for the 2012 July 12 CME. We found that 55% of our ensemble members correctly reproduce the sign of the magnetic field components at Earth. We also determined that the uncertainties in GCS fitting can widen the CME arrival time prediction window to about 12 hr for the 2012 July 12 CME. On investigating the forecast accuracy introduced by the uncertainties in individual GCS parameters, we conclude that the half-angle and aspect ratio have little impact on the predicted magnetic field of the 2012 July 12 CME, whereas the uncertainties in longitude and tilt can introduce relatively large spread in the magnetic field predicted at Earth. 
    more » « less
  2. The Sun constantly releases radiation and plasma into the heliosphere. Sporadically, the Sun launches solar eruptions such as flares and coronal mass ejections (CMEs). CMEs carry away a huge amount of mass and magnetic flux with them. An Earth-directed CME can cause serious consequences to the human system. It can destroy power grids/pipelines, satellites, and communications. Therefore, accurately monitoring and predicting CMEs is important to minimize damages to the human system. In this study we propose an ensemble learning approach, named CMETNet, for predicting the arrival time of CMEs from the Sun to the Earth. We collect and integrate eruptive events from two solar cycles, #23 and #24, from 1996 to 2021 with a total of 363 geoeffective CMEs. The data used for making predictions include CME features, solar wind parameters and CME images obtained from the SOHO/LASCO C2 coronagraph. Our ensemble learning framework comprises regression algorithms for numerical data analysis and a convolutional neural network for image processing. Experimental results show that CMETNet performs better than existing machine learning methods reported in the literature, with a Pearson product-moment correlation coefficient of 0.83 and a mean absolute error of 9.75 h. 
    more » « less
  3. Graduated Cylindrical Shell (GCS) model is a widely used tool to determine direction, kinematic and orientation properties of Coronal Mass Ejections (CME) using multi-viewpoint observations from SOHO and STEREO A&B coronagraphs. In this study, we estimate the subjective uncertainties typically seen while deriving these CME properties by comparing the GCS model results reported in multiple studies and catalogs for 56 CMEs. We find that the GCS estimates of latitude, longitude, and tilt show an average uncertainty of 5.7, 11.2, and 24.7 degrees with standard deviation of 5.5, 12.7, and 19.7 degrees respectively. We found that the uncertainties in estimated latitudes are correlated with uncertainties in estimated longitude, tilt, and speed, showing that some CMEs are inherently difficult to fit than others. We then introduced these uncertainty values in our 3-D magnetohydrodynamic flux rope based modified spheromak CME model to figure out their consequences for space weather prediction. We find that much better CME observations are required to reliably predict magnetic field of CMEs at 1 AU using flux rope based models, since the uncertainties in estimated GCS values can result in large differences in 1 AU signatures, especially for CMEs launched away from the Sun-Earth line. 
    more » « less
  4. Predictions of coronal mass ejection (CME) propagation and impact in the heliosphere, in either research or operational settings, are usually performed by employing magnetohydrodynamic (MHD) models. Within such simulations, the CME ejecta is often described as a hydrodynamic pulse that lacks an internal magnetic field and is characterized by a spherical geometry – leading to the so-called cone CME model. White-light observations of CMEs in the corona, however, reveal that the morphology of these structures resembles more closely that of a croissant, i.e., exhibiting an elongated cross-section of their front. It follows that, in space weather forecasts, the assumption of a spherical geometry may result in erroneous predictions of CME impacts in the heliosphere in terms of hit/miss and arrival time/speed, especially in the case of flank encounters. A spheroid CME model is expected to provide a more accurate description of the elongated morphology that is often observed in CMEs. In this paper, we describe the implementation and initial validation of the spheroid CME model within the MHD EUropean Heliospheric FORecasting Information Asset (EUHFORIA) code. We perform EUHFORIA simulations of an idealized CME as well as a “real” event to compare the spheroidal model with the traditional cone one. We show how the initial ejecta geometry can lead to substantially different estimates in terms of CME impact, arrival time/speed, and geoeffectiveness, especially with increasing distance to the CME nose.

     
    more » « less
  5. Context.Predicting geomagnetic events starts with an understanding of the Sun-Earth chain phenomena in which (interplanetary) coronal mass ejections (CMEs) play an important role in bringing about intense geomagnetic storms. It is not always straightforward to determine the solar source of an interplanetary coronal mass ejection (ICME) detected at 1 au.

    Aims.The aim of this study is to test by a magnetohydrodynamic (MHD) simulation the chain of a series of CME events detected from L1 back to the Sun in order to determine the relationship between remote and in situ CMEs.

    Methods.We analysed both remote-sensing observations and in situ measurements of a well-defined magnetic cloud (MC) detected at L1 occurring on 28 June 2013. The MHD modelling is provided by the 3D MHD European Heliospheric FORecasting Information Asset (EUHFORIA) simulation model.

    Results.After computing the background solar wind, we tested the trajectories of six CMEs occurring in a time window of five days before a well-defined MC at L1 that may act as the candidate of the MC. We modelled each CME using the cone model. The test involving all the CMEs indicated that the main driver of the well-defined, long-duration MC was a slow CME. For the corresponding MC, we retrieved the arrival time and the observed proton density.

    Conclusions.EUHFORIA confirms the results obtained in the George Mason data catalogue concerning this chain of events. However, their proposed solar source of the CME is disputable. The slow CME at the origin of the MC could have its solar source in a small, emerging region at the border of a filament channel at latitude and longitude equal to +14 degrees.

     
    more » « less