skip to main content


Title: A phase field model to simulate crack initiation from pitting site in isotropic and anisotropic elastoplastic material
Abstract

A multiphysics phase field framework for coupled electrochemical and elastoplastic behaviors is presented, where the evolution of complex solid-electrolyte is described by the variation of the phase field variable with time. The solid-electrolyte interface kinetics nonlinearly depends on the thermodynamic driving force and can be accelerated by mechanical straining according to the film rupture-dissolution mechanism. A number of examples in two- and three- dimensions are demonstrated based on the finite element-based MOOSE framework. The model successfully captures the pit-to-crack transition under simultaneous electrochemical and mechanical effects. The crack initiation and growth has been demonstrated to depend on a variety of materials properties. The coupled corrosion and crystal plasticity framework also predict the crack initiation away from the perpendicular to the loading direction.

 
more » « less
Award ID(s):
2139383
NSF-PAR ID:
10412595
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Modelling and Simulation in Materials Science and Engineering
Volume:
31
Issue:
5
ISSN:
0965-0393
Page Range / eLocation ID:
Article No. 055002
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herein, the mechanical behaviors of Li10GeP2S12(LGPS) solid electrolytes during electrochemical cycling using operando X‐ray tomography are investigated. It is demonstrated that the bulk mechanical decomposition of LGPS when cycled against lithium is a direct result of electrochemical reduction of the solid electrolyte at the LGPS/Li0interface. The reductive decomposition of LGPS during lithium plating results in the formation of low‐density domains at the electrode/electrolyte interface, which impose sufficient mechanical stress on the underlying LGPS to crack the SE pellet. The critical stress developed prior to pellet fracture is significantly lower than the bulk shear modulus of LGPS, suggesting that the electrochemical instability of LGPS dramatically worsens the mechanical stability of the material near the LGPS/Li0interface. It is also shown that the application of a highly concentrated liquid electrolyte to the LGPS surface suppresses the reductive decomposition of LGPS, improving both the electrochemical performance and mechanical stability of the bulk LGPS solid electrolyte.

     
    more » « less
  2. Abstract Lithium (Li) dendrite formation in Li-metal batteries (LMBs) remains a key obstacle preventing LMBs from their widespread application. This study focuses on the role of the stress field in the Li electrodeposits formation and growth. Coupled electrochemical and mechanical phase-field model (PFM) is used to investigate electrodeposited Li evolution under different conditions. The PFM results, using both the anisotropic elastic properties of Li and the random delivery of Li-ions through the solid electrolyte interface, show a significant local stress development indicating a direct correlation between the stress field and the origin of the undesired Li filaments initiation. 
    more » « less
  3. All-solid-state batteries (ASSBs) have garnered increasing attention due to the enhanced safety, featuring nonflammable solid electrolytes as well as the potential to achieve high energy density. 1 The advancement of the ASSBs is expected to provide, arguably, the most straightforward path towards practical, high-energy, and rechargeable batteries based on metallic anodes. 1 However, the sluggish ion transmission at the cathode-electrolyte (solid/solid) interface would result in the high resistant at the contact and limit the practical implementation of these all solid-state materials in real world batteries. 2 Several methods were suggested to enhance the kinetic condition of the ion migration between the cathode and the solid electrolyte (SE). 3 A composite strategy that mixes active materials and SEs for the cathode is a general way to decrease the ion transmission barrier at the cathode-electrolyte interface. 3 The active material concentration in the cathode is reduced as much as the SE portion increases by which the energy density of the ASSB is restricted. In addition, the mixing approach generally accompanies lattice mismatches between the cathode active materials and the SE, thus providing only limited improvements, which is imputed by random contacts between the cathode active materials and the SE during the mixing process. Implementing high-pressure for the electrode and electrolyte of ASSB in the assembling process has been verified is a but effective way to boost the ion transmission ability between the cathode active materials and the SE by decreasing the grain boundary impedance. Whereas the short-circuit of the battery would be induced by the mechanical deformation of the electrolyte under high pressure. 4 Herein, we demonstrate a novel way to address the ion transmission problem at the cathode-electrolyte interface in ASSBs. Starting from the cathode configuration, the finite element method (FEM) was employed to evaluate the current concentration and the distribution of the space charge layer at the cathode-electrolyte interface. Hierarchical three-dimensional (HTD) structures are found to have a higher Li + transfer number (t Li+ ), fewer free anions, and the weaker space-charge layer at the cathode-electrolyte interface in the resulting FEM simulation. To take advantage of the HTD structure, stereolithography is adopted as a manufacturing technique and single-crystalline Ni-rich (SCN) materials are selected as the active materials. Next, the manufactured HTD cathode is sintered at 600 °C in an N 2 atmosphere for the carbonization of the resin, which induces sufficient electronic conductivity for the cathode. Then, the gel-like Li 1.4 Al 0.4 Ti 1.6 (PO 4 ) 3 (LATP) precursor is synthesized and filled into the voids of the HTD structure cathode sufficiently. And the filled HTD structure cathodes are sintered at 900 °C to achieve the crystallization of the LATP gel. Scanning transmission electron microscopy (STEM) is used to unveil the morphology of the cathode-electrolyte interface between the sintered HTD cathode and the in-situ generated electrolyte (LATP). A transient phase has been found generated at the interface and matched with both lattices of the SCN and the SE, accelerating the transmission of the Li-ions, which is further verified by density functional theory calculations. In addition, Electron Energy Loss Spectroscopy demonstrates the preserved interface between HTD cathode and SEs. Atomic force microscopy is employed to measure the potential image of the cross-sectional interface by the peak force tapping mode. The average potential of modified samples is lower than the sample that mix SCN and SEs simply in the 2D planar structure, which confirms a weakened space charge layer by the enhanced contact capability as well as the ion transmission ability. To see if the demonstrated method is universally applicable, LiNi 0.8 Co 0.1 Mn 0.1 O 2 (NCM811) is selected as the cathode active material and manufactured in the same way as the SCN. The HTD cathode based on NCM811 exhibits higher electrochemical performance compared with the reference sample based on the 2D planar mixing-type cathode. We believe such a demonstrated universal strategy provides a new guideline to engineer the cathode/electrolyte interface by revolutionizing electrode structures that can be applicable to all-solid-state batteries. Figure 1. Schematic of comparing of traditional 2D planar cathode and HTD cathode in ASSB Tikekar, M. D. , et al. , Nature Energy (2016) 1 (9), 16114 Banerjee, A. , et al. , Chem Rev (2020) 120 (14), 6878 Chen, R. , et al. , Chem Rev (2020) 120 (14), 6820 Cheng, X. , et al. , Advanced Energy Materials (2018) 8 (7) Figure 1 
    more » « less
  4. Abstract

    The development of all‐solid‐state Li‐ion batteries requires solid electrolyte materials with many desired properties, such as ionic conductivity, chemical and electrochemical stability, and mechanical durability. Computation‐guided materials design techniques are advantageous in designing and identifying new solid electrolytes that can simultaneously meet these requirements. In this joint computational and experimental study, a new family of fast lithium ion conductors, namely, LiTaSiO5with sphene structure, are successfully identified, synthesized, and demonstrated using a novel computational design strategy. First‐principles computation predicts that Zr‐doped LiTaSiO5sphene materials have fast Li diffusion, good phase stability, and poor electronic conductivity, which are ideal for solid electrolytes. Experiments confirm that Zr‐doped LiTaSiO5sphene structure indeed exhibits encouraging ionic conductivity. The lithium diffusion mechanisms in this material are also investigated, indicating the sphene materials are 3D conductors with facile 1D diffusion along the [101] direction and additional cross‐channel migration. This study demonstrates a novel design strategy of activating fast Li ionic diffusion in lithium sphenes, a new materials family of superionic conductors.

     
    more » « less
  5. Abstract

    Solid‐state lithium (Li) metal batteries (LMBs) have been developed as a promising replacement for conventional Li‐ion batteries due to their potential for higher energy. However, the current solid‐state electrolytes used in LMBs have limitations regarding mechanical and electrochemical properties and interfacial stability. Here, a fluorine (F)‐containing solid polymer electrolyte (SPE) having a bi‐continuous structure of F‐containing elastomers and plastic crystals is reported. The trifluoroethyl acrylate‐based SPE (T‐SPE) exhibits high ionic conductivity over 10−3 S cm−1, superior mechanical elasticity, and robust LiF‐rich interphases at both the Li metal anode and the LiNi0.83Mn0.06Co0.11O2cathode. Full cells with thin T‐SPEs and low negative/positive capacity ratios below 0.5 at the high‐operating voltage of 4.5 V demonstrate a high specific energy of 538 Wh kganode+cathode+electrolyte−1and maintain 393 Wh kg−1at a high specific power of 804 W kganode+cathode+electrolyte−1. The F‐containing phase‐separated SPE system provides a powerful strategy for achieving high‐energy and ‐power solid‐state LMBs.

     
    more » « less