skip to main content


This content will become publicly available on December 1, 2024

Title: High-efficiency gold recovery by additive-induced supramolecular polymerization of β-cyclodextrin
Abstract Developing an eco-friendly, efficient, and highly selective gold-recovery technology is urgently needed in order to maintain sustainable environments and improve the utilization of resources. Here we report an additive-induced gold recovery paradigm based on precisely controlling the reciprocal transformation and instantaneous assembly of the second-sphere coordinated adducts formed between β-cyclodextrin and tetrabromoaurate anions. The additives initiate a rapid assembly process by co-occupying the binding cavity of β-cyclodextrin along with the tetrabromoaurate anions, leading to the formation of supramolecular polymers that precipitate from aqueous solutions as cocrystals. The efficiency of gold recovery reaches 99.8% when dibutyl carbitol is deployed as the additive. This cocrystallization is highly selective for square-planar tetrabromoaurate anions. In a laboratory-scale gold-recovery protocol, over 94% of gold in electronic waste was recovered at gold concentrations as low as 9.3 ppm. This simple protocol constitutes a promising paradigm for the sustainable recovery of gold, featuring reduced energy consumption, low cost inputs, and the avoidance of environmental pollution.  more » « less
Award ID(s):
1925708
NSF-PAR ID:
10412653
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Nature Communications
Volume:
14
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Herein, a smart supramolecular self‐assembly‐mediated signal amplification strategy is developed on a paper‐based nanobiosensor to achieve the sensitive and customized detection of biomarkers. The host–guest recognition between β‐cyclodextrin‐coated gold nanoparticles (AuNPs) and 1‐adamantane acetic acid or tetrakis(4‐carboxyphenyl)porphyrin is designed and applied to the layer‐by‐layer self‐assembly of AuNPs at the test area of the strip. Thus, the amplified platform exhibits a high sensitivity with a detection limit at subattogram levels (approximately dozens of molecules per strip) and a wide dynamic range of concentration over seven orders of magnitude. The applicability and universality of this sensitive platform are demonstrated in clinically significant ranges to measure carcinoembryonic antigen and HIV‐1 capsid p24 antigen in spiked serum and clinical samples. The customized biomarker detection ability for the on‐demand needs of clinicians is further verified through cycle incubation‐mediated controllable self‐assembly. Collectively, the supramolecular self‐assembly amplification method is suitable as a universal point‐of‐care diagnostic tool and can be readily adapted as a platform technology for the sensitive assay of many different target analytes.

     
    more » « less
  2. Abstract

    The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo‐binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co‐crystallization and concomitant co‐precipitation between [PtCl6]2−dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6]2−dianion recognition is driven by weak [Pt−Cl⋅⋅⋅H−C] hydrogen bonding and [Pt−Cl⋅⋅⋅C=O] ion–dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt‐ and Pd‐ or Rh‐based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6]2−dianions from a mixture of [PtCl6]2−, [PdCl4]2−, and [RhCl6]3−anions. This protocol could be exploited to recover platinum from spent vehicular three‐way catalytic converters and other platinum‐bearing metal waste.

     
    more » « less
  3. Abstract

    The recognition and separation of anions attracts attention from chemists, materials scientists, and engineers. Employing exo‐binding of artificial macrocycles to selectively recognize anions remains a challenge in supramolecular chemistry. We report the instantaneous co‐crystallization and concomitant co‐precipitation between [PtCl6]2−dianions and cucurbit[6]uril, which relies on the selective recognition of these dianions through noncovalent bonding interactions on the outer surface of cucurbit[6]uril. The selective [PtCl6]2−dianion recognition is driven by weak [Pt−Cl⋅⋅⋅H−C] hydrogen bonding and [Pt−Cl⋅⋅⋅C=O] ion–dipole interactions. The synthetic protocol is highly selective. Recognition is not observed in combinations between cucurbit[6]uril and six other Pt‐ and Pd‐ or Rh‐based chloride anions. We also demonstrated that cucurbit[6]uril is able to separate selectively [PtCl6]2−dianions from a mixture of [PtCl6]2−, [PdCl4]2−, and [RhCl6]3−anions. This protocol could be exploited to recover platinum from spent vehicular three‐way catalytic converters and other platinum‐bearing metal waste.

     
    more » « less
  4. Abstract

    Metal patterning via additive manufacturing has been phasing‐in to broad applications in many medical, electronics, aerospace, and automotive industries. While previous efforts have produced various promising metal‐patterning strategies, their complexity and high cost have limited their practical application in rapid production and prototyping. Herein, a one‐step gold printing technique based on anion‐assisted photochemical deposition (APD), which can directly print highly conductive gold patterns (1.08 × 107S m−1) under ambient conditions without post‐annealing treatment, is introduced. Uniquely, the APD uses specific ion effects with projection lithography to pattern Au nanoparticles and simultaneously sinter them into tunable porous gold structures. The significant influence of kosmotropic or chaotropic anions in the precursor ink on tuning the morphologies and conductivities of the printed patterns by employing a series of different ions, including Clions, in the printing process is presented. Additionally, the resistance stabilities and the electrochemical properties of the APD‐printed gold patterns are carefully investigated. The high conductivity and excellent conformability of the printed Au electrodes are demonstrated with reliable performance in electrophysiological signal delivery and acquisition for biomedical applications. This work exploits the potential of photochemical‐deposition‐based metal patterning in flexible electronic manufacturing.

     
    more » « less
  5. Abstract

    Even in the 21st century, prostate cancer remains the second leading cause of cancer‐related death for men. Since a normal prostate gland has a high ZnIIcontent and there are huge differences in ZnIIcontent between healthy and malignant prostate cancer cells, mobile zinc can be used as a biomarker for prostate cancer prediction. A highly efficient surface enhanced Raman spectroscopy (SERS) probe using ap‐(imidazole)azo)benzenethiol attached gold nanoparticle as a Raman reporter, which has the capability to identify prostate cancer cells based on ZnIIsensing, has been designed. A facile synthesis, characterization and evaluation of a ZnIIsensing Raman probe are described. Reported data indicate that after binding with ZnII, Raman reporter attached to a gold nanoparticle forms an assembly structure, which allows selective detection of ZnIIeven at 100 ppt concentration. Theoretical full‐wave finite‐difference time‐domain (FDTD) simulations have been used to understand the enhancement of the SERS signal. The SERS probe is highly promising for in vivo sensing of cancer, where near‐IR light can be easily used to avoid tissue autofluorescence and to enhance tissue penetration depth. Reported data show that the SERS probe can distinguish metastatic cancer cells from normal prostate cells very easily with a sensitivity as low as 5 cancer cells mL−1. The probe can be used as a chemical toolkit for determining mobile ZnIIconcentrations in biological samples.

     
    more » « less