Abstract C‐aryl glycosyl compounds offer better in vivo stability relative toO‐ andN‐glycoside analogues.C‐aryl glycosides are extensively investigated as drug candidates and applied to chemical biology studies. Previously,C‐aryl glycosides were derived from lactones, glycals, glycosyl stannanes, and halides, via methods displaying various limitations with respect to the scope, functional‐group compatibility, and practicality. Challenges remain in the synthesis ofC‐aryl nucleosides and 2‐deoxysugars from easily accessible carbohydrate precursors. Herein, we report a cross‐coupling method to prepareC‐aryl and heteroaryl glycosides, including nucleosides and 2‐deoxysugars, from glycosyl esters and bromoarenes. Activation of the carbohydrate substrates leverages dihydropyridine (DHP) as an activating group followed by decarboxylation to generate a glycosyl radical via C−O bond homolysis. This strategy represents a new means to activate alcohols as a cross‐coupling partner. The convenient preparation of glycosyl esters and their stability exemplifies the potential of this method in medicinal chemistry.
more »
« less
N‐Alkylated Analogues of Indolylthio Glycosides as Glycosyl Donors with Enhanced Activation Profile
Abstract While studying indolylthio glycosides, previously we determined their activation profile that required large excess of activators. This drawback was partially addressed in the present study of N‐alkylated SInR derivatives. The activation process was studied by NMR and the increased understanding of the mechanism led to a discovery of different activation pathways taking place with SIn versus SInR derivatives. Also investigated was orthogonality of the SInR leaving groups versus thioglycosides and selective activation of thioimidates over SInR glycosides.
more »
« less
- PAR ID:
- 10412782
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- European Journal of Organic Chemistry
- Volume:
- 2022
- Issue:
- 18
- ISSN:
- 1434-193X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Plant nucleotide-binding, leucine-rich-repeat (NLR) immune receptors recognize pathogen effectors and activate immunity. The NLR RPS2 recognizes AvrRpt2, aPseudomonaseffector that promotes virulence by proteolytically cleaving a membrane-tethered host protein, RIN4. RIN4 cleavage by AvrRpt2 generates fragments that activate RPS2. A model for RPS2 activation by RIN4 destruction is consistent with the ectopic activity of RPS2 in plants lacking RIN4 but does not explain the link between AvrRpt2’s virulence activity and RPS2 activation. We found that non-membrane-tethered RIN4 derivatives are potent cytosolic activators of RPS2. Activation of RPS2 by these RIN4 derivatives, like AvrRpt2-induced activation, and unlike ectopic activation in the absence of RIN4, requires the defense signaling protein NDR1. Cleavage products of RIN4 produced by AvrRpt2 play contrasting roles in the activation of RPS2, with the membrane-tethered C-terminal fragment suppressing RPS2 and the non-membrane-tethered internal fragment, dependent on compatibility with the C-terminal fragment, overcoming its suppression of RPS2. HighlightsNon-membrane tethered derivatives of RIN4 activate RPS2-induced cell deathActivation of RPS2 by non-membrane-tethered derivatives of RIN4 requires NDR1AvrRpt2-induced cleavage fragments of RIN4 play contrasting roles in RPS2 activationmore » « less
-
Abstract Thermogravimetric analysis of polyethylene oxide (powder and nanofibers obtained by force spinning water or chloroform solutions of polyethylene oxide) was studied using different theoretical models such as Friedman and Flynn‐Wall‐Ozawa. A semiempirical approach for estimating the “sigmoid activation energy” from the thermal degradation was suggested and confirmed by the experimental data on PEO powder and nanofibers' mats. The equation allowed for calculating a “sigmoid activation energy” from a single thermogram using a single heating rate without requiring any model for the actual complex set of chemical reactions involved in the thermal degradation process. For PEO (powder and nanofibers obtained from water solutions), the “sigmoid activation energy” increased as the heating rate was increased. The sigmoid activation energy for PEO mats obtained from chloroform solutions exhibited a small decrease as the heating rate was increased. Thermograms' derivatives were fitted to determine the coordinates of the inflection points. The “sigmoid activation energy” was compared to the activation energy determined from the Flynn‐Wall‐Ozawa model. Similarities between the thermal degradation of polyethylene oxide powder and of the nanofibers obtained from water solutions were discussed. Significant differences between the sigmoid activation energies of the mats obtained from water and chloroform solutions were reported.more » « less
-
Abstract Confinement‐imposed photophysics was probed for novel stimuli‐responsive hydrazone‐based compounds demonstrating a conceptual difference in their behavior within 2D versus 3D porous matrices for the first time. The challenges associated with photoswitch isomerization arising from host interactions with photochromic compounds in 2D scaffolds could be overcome in 3D materials. Solution‐like photoisomerization rate constants were realized for sterically demanding hydrazone derivatives in the solid state through their coordinative immobilization in 3D scaffolds. According to steady‐state and time‐resolved photophysical measurements and theoretical modeling, this approach provides access to hydrazone‐based materials with fast photoisomerization kinetics in the solid state. Fast isomerization of integrated hydrazone derivatives allows for probing and tailoring resonance energy transfer (ET) processes as a function of excitation wavelength, providing a novel pathway for ET modulation.more » « less
-
Summary The chemical arms race between plants and insects is foundational to the generation and maintenance of biological diversity. We asked how the evolution of a novel defensive compound in an already well‐defended plant lineage impacts interactions with diverse herbivores.Erysimum cheiranthoides(Brassicaceae), which produces both ancestral glucosinolates and novel cardiac glycosides, served as a model.We analyzed gene expression to identify cardiac glycoside biosynthetic enzymes inE. cheiranthoidesand characterized these enzymes via heterologous expression and CRISPR/Cas9 knockout. UsingE. cheiranthoidescardiac glycoside‐deficient lines, we conducted insect experiments in both the laboratory and field.EcCYP87A126 initiates cardiac glycoside biosynthesis via sterol side‐chain cleavage, andEcCYP716A418 has a role in cardiac glycoside hydroxylation. In EcCYP87A126knockout lines, cardiac glycoside production was eliminated. Laboratory experiments with these lines revealed that cardiac glycosides were highly effective defenses against two species of glucosinolate‐tolerant specialist herbivores, but did not protect against all crucifer‐feeding specialist herbivores in the field. Cardiac glycosides had lesser to no effect on two broad generalist herbivores.These results begin elucidation of theE. cheiranthoidescardiac glycoside biosynthetic pathway and demonstratein vivothat cardiac glycoside production allowsErysimumto escape from some, but not all, specialist herbivores.more » « less
An official website of the United States government
