skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Changing seasonality of daily and monthly precipitation extremes for the contiguous USA and possible connections with large‐scale climate patterns
Abstract Temporal changes in the seasonality of extreme precipitation, and possible teleconnections between the seasonality of extreme precipitation and large‐scale climate patterns are not well understood. In this study, we investigated temporal changes in seasonality of annual daily maximum (ADM) and monthly maximum (MM) precipitation indices over the period 1951–2014 for 1,108 stations across the contiguous USA. We also examined seasonality of extreme precipitation during negative and positive phases of three major oscillations: the El Niño–Southern Oscillation, the Northern Atlantic Oscillation, and the Pacific Decadal Oscillation. Our results show that many climate regions within the contiguous USA display distinct seasonality for both ADM and MM. Comparison of seasonality between two historical records of equal length, that is, before and after 1981, shows great spatial variability across the contiguous USA. While a spatial coherence of change in the mean date of occurrence of extreme precipitation across a large area is not visible, a cluster of stations showing decrease in strength of seasonality for the recent period is concentrated in the eastern Gulf Coast and coastal sites of Northeast and Northwest regions. Extreme precipitation seasonality during negative and positive phases of three climate indices revealed that large‐scale climate variabilities have a strong influence on the mean date of occurrence of extreme precipitation but generally weak influence on the strength of seasonality in the contiguous USA. Results from our study might be helpful for sustainable water resource management, flood risk mitigation, and prediction of future precipitation seasonality.  more » « less
Award ID(s):
1901426
PAR ID:
10412827
Author(s) / Creator(s):
 ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
International Journal of Climatology
Volume:
43
Issue:
6
ISSN:
0899-8418
Page Range / eLocation ID:
p. 2647-2666
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In the Asia–Pacific region (APR), extreme precipitation is one of the most critical climate stressors, affecting 60% of the population and adding pressure to governance, economic, environmental, and public health challenges. In this study, we analyzed extreme precipitation spatiotemporal trends in APR using 11 different indices and revealed the dominant factors governing precipitation amount by attributing its variability to precipitation frequency and intensity. We further investigated how these extreme precipitation indices are influenced by El Niño-Southern Oscillation (ENSO) at a seasonal scale. The analysis covered 465 ERA5 (the fifth-generation atmospheric reanalysis of the European Center for Medium-Range Weather Forecasts) study locations over eight countries and regions during 1990–2019. Results revealed a general decrease indicated by the extreme precipitation indices (e.g., the annual total amount of wet-day precipitation, average intensity of wet-day precipitation), particularly in central-eastern China, Bangladesh, eastern India, Peninsular Malaysia and Indonesia. We observed that the seasonal variability of the amount of wet-day precipitation in most locations in China and India are dominated by precipitation intensity in June–August (JJA), and by precipitation frequency in December–February (DJF). Locations in Malaysia and Indonesia are mostly dominated by precipitation intensity in March–May (MAM) and DJF. During ENSO positive phase, significant negative anomalies in seasonal precipitation indices (amount of wet-day precipitation, number of wet days and intensity of wet-day precipitation) were observed in Indonesia, while opposite results were observed for ENSO negative phase. These findings revealing patterns and drivers for extreme precipitation in APR may inform climate change adaptation and disaster risk reduction strategies in the study region. 
    more » « less
  2. Abstract Flash droughts are recently recognized subseasonal extreme climate phenomena, which develop with rapid onset and intensification and have significant socio‐environmental impacts. However, their historical trends and variability remain unclear largely due to the uncertainty associated with existing approaches. Here we comprehensively assessed trends, spatiotemporal variability, and drivers of soil moisture (SM) and evaporative demand (ED) flash droughts over the contiguous United States (CONUS) during 1981–2018 using hierarchical clustering, wavelet analysis, and bootstrapping conditional probability approaches. Results show that flash droughts occur in all regions in CONUS with Central and portions of the Eastern US showing the highest percentage of weeks in flash drought. ED flash drought trends are significantly increasing in all regions, while SM flash drought trends were relatively weaker across CONUS, with small significant increasing trends in the South and West regions and a decreasing trend in the Northeast. Rising ED flash drought trends are related to increasing temperature trends, while SM flash drought trends are strongly related to trends in weekly precipitation intensity besides weekly average precipitation and evapotranspiration. In terms of temporal variability, high severity flash droughts occurred every 2–7 years, corresponding with ENSO periods. For most CONUS regions, severe flash droughts occurred most often during La Niña and when the American Multidecadal Oscillation was in a positive phase. Pacific Decadal Oscillation negative phases and Artic Oscillation positive phases were also associated with increased flash drought occurrences in several regions. These findings may have implications for informing long‐term flash drought predictions and adaptations. 
    more » « less
  3. Global warming is likely to provoke extreme storms in the eastern United States (eUS), ultimately affecting the probabilistic distribution of the dates of daily maximum precipitation. In this study, probabilistic properties of timing of annual maximum precipitation (AMP) were studied using circular statistics at 583 sites in the eUS (1950–2019). A kernel circular density method was applied to examine distributional modes of timing of AMP. The results of circular median show that seasonality is pronounced across the eUS with many locations having their median date of occurrence in summer, and AMP seasonality is strong in the East North Central region. Similarly, results of circular density method applied to the distribution of AMP timing shows that around 90% of the sites have two or three modes of AMP seasonality in the eUS. Comparison of seasonality between two historical records of equal length (1950–1984 and 1985–2019) shows great spatial variability across the eUS. Temporal changes in seasonal modes for AMP dates revealed four different cases of seasonality changes: (i) weakening of seasonality, (ii) strengthening of seasonality, (iii) strong seasonality for both the old and recent periods, (iv) or uniform or no preferred seasonality for both periods. While a spatial coherence of seasonality changes was not observed, majority of sites showed strong seasonality (case iii) for old and recent periods mainly during summer and fall seasons. 
    more » « less
  4. Abstract A large proportion of western North America experiences regular water stress, compounded by high seasonal and interannual variability. In the Intermountain West region, the El Niño/Southern Oscillation (ENSO) is a critical control on winter precipitation, but the nature of this signal is entangled with a combination of orographic effects and long-term climate trends. This study employs a spatially distributed, nonlinear spline model to isolate ENSO impacts from these other factors using gauge-based observations starting in 1871. In contrast to previous modelling approaches, our approach uses original gauge data, without shortening the record to accommodate a common period. This enables more detailed separation of ENSO effects from the confounding influence of topography and long-term trends, whereas the longer time frame permits more robust correlation with the ENSO signal. Here we show that the complex topography of the Intermountain West exaggerates the underlying ENSO signal, producing a 2.3–5.8 times increase in the range of ENSO-induced precipitation changes along high-elevation western slopes relative to lower elevations. ENSO effects on winter precipitation can be as large as ± 100 mm at high elevations. Further, our approach reveals that the previously recognized dipolar pattern of positive (negative) association of ENSO with precipitation in the south (north) manifests as an incremental relationship in the south but as a near-binary switch in effects between El Niño and La Niña in the north. The location and extent of the strongest precipitation differences vary during the positive and negative ENSO phases within each region. The intricacies of these spatial- and elevation-based modulations of ENSO impacts are especially informative for the northern centre of this dipole, where ENSO-precipitation relationships have previously been difficult to resolve. 
    more » « less
  5. Abstract Precipitation extremes are increasing globally due to anthropogenic climate change. However, there remains uncertainty regarding impacts upon flood occurrence and subsequent population exposure. Here, we quantify changes in population exposure to flood hazard across the contiguous United States. We combine simulations from a climate model large ensemble and a high‐resolution hydrodynamic flood model—allowing us to directly assess changes across a wide range of extreme precipitation magnitudes and accumulation timescales. We report a mean increase in the 100‐year precipitation event of ~20% (magnitude) and >200% (frequency) in a high warming scenario, yielding a ~30–127% increase in population exposure. We further find a nonlinear increase for the most intense precipitation events—suggesting accelerating societal impacts from historically rare or unprecedented precipitation events in the 21st century. 
    more » « less