skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparing study features is easy but identifying next steps is hard: Evaluating critical thinking through the Biology Lab Inventory of Critical Thinking in Ecology
Abstract Critical thinking, which can be defined as the evidence‐based ways in which people decide what to trust and what to do, is an important competency included in many undergraduate science, technology, engineering, and mathematics (STEM) courses. To help instructors effectively measure critical thinking, we developed the Biology Lab Inventory of Critical Thinking in Ecology (Eco‐BLIC), a freely available, closed‐response assessment of undergraduate students' critical thinking in ecology. The Eco‐BLIC includes ecology‐based experimental scenarios followed by questions that measure how students decide on what to trust and what to do next. Here, we present the development of the Eco‐BLIC using tests of validity and reliability. Using student responses to questions and think‐aloud interviews, we demonstrate the effectiveness of the Eco‐BLIC at measuring students' critical thinking skills. We find that while students generally think like experts while evaluating what to trust, students' responses are less expert‐like when deciding on what to do next.  more » « less
Award ID(s):
1909602
PAR ID:
10412856
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
13
Issue:
5
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Pamucar, Dragan (Ed.)
    Critical thinking is the process by which people make decisions about what to trust and what to do. Many undergraduate courses, such as those in biology and physics, include critical thinking as an important learning goal. Assessing critical thinking, however, is non-trivial, with mixed recommendations for how to assess critical thinking as part of instruction. Here we evaluate the efficacy of assessment questions to probe students’ critical thinking skills in the context of biology and physics. We use two research-based standardized critical thinking instruments known as the Biology Lab Inventory of Critical Thinking in Ecology (Eco-BLIC) and Physics Lab Inventory of Critical Thinking (PLIC). These instruments provide experimental scenarios and pose questions asking students to evaluate what to trust and what to do regarding the quality of experimental designs and data. Using more than 3000 student responses from over 20 institutions, we sought to understand what features of the assessment questions elicit student critical thinking. Specifically, we investigated (a) how students critically evaluate aspects of research studies in biology and physics when they are individually evaluating one study at a time versus comparing and contrasting two and (b) whether individual evaluation questions are needed to encourage students to engage in critical thinking when comparing and contrasting. We found that students are more critical when making comparisons between two studies than when evaluating each study individually. Also, compare-and-contrast questions are sufficient for eliciting critical thinking, with students providing similar answers regardless of if the individual evaluation questions are included. This research offers new insight on the types of assessment questions that elicit critical thinking at the introductory undergraduate level; specifically, we recommend instructors incorporate more compare-and-contrast questions related to experimental design in their courses and assessments. 
    more » « less
  2. Raju, PK (Ed.)
    Experiences during post-secondary education can accentuate the ongoing, ever-changing process of developing 21st-century skills for undergraduate students. These 21st-century skills, including critical thinking (CT), are important for students to develop for competitive job placement after graduation. The future workforce requires diverse knowledge, skills, and dispositions to navigate complex and ever-changing jobs, especially in science, technology, engineering, and mathematics (STEM) fields. Purpose: This project aimed to qualitatively investigate previously determined quantitative attributes of CT to gain a deeper understanding of how these attributes manifest themselves in undergraduate STEM scholars’ problem-solving and decision-making. Sample: Twelve program undergraduate student participants from a STEM professional development program partook in completing materials for this study. Methods: We used a phenomenology approach to explore the nuances of CT attributes from the responses of our program participants. We explored how the eight CT attributes (induction, analysis, inference, evaluation, deduction, interpretation, explanation, numeracy) emerged from participant responses, in isolation and in interaction with each other in undergraduate STEM students’ responses to real-world scenarios to find potential trends or insights to better understand the intricate nature of critical thinking as a construct. Results: While we aimed to explore CT attributes in isolation based on their previously defined definitions, our findings demonstrate that certain CT attributes occurred concurrently with other CT attributes at higher frequencies than others (e.g., analysis and induction). These concurrent attributes show that undergraduate students identified various entry points to a real-life scenario, and simultaneously find multiple solutions to these complex problems. The findings of this exploratory study suggest areas for STEM program improvement based on the qualitative examination of whether CT attributes are present, and how they might also happen concurrently more frequently when undergraduate students face real-life decision-making scenarios. Conclusions: Findings from this study will help create a more robust program model for undergraduate student development to meet STEM workforce demands and competitive job placement after graduation. A deep understanding of what makes up this complex construct is essential to increase students’ CT skills. Further research in this area may explore how CT attributes offer additional insights for framing undergraduate professional development programs. With careful attention to distinct and concurrent attributes, carefully designed professional development might be more effective and transferrable to STEM fields. 
    more » « less
  3. Raju, PK (Ed.)
    Experiences during post-secondary education can accentuate the ongoing, ever-changing process of developing 21st-century skills for undergraduate students. These 21st-century skills, including critical thinking (CT), are important for students to develop for competitive job placement after graduation. The future workforce requires diverse knowledge, skills, and dispositions to navigate complex and ever-changing jobs, especially in science, technology, engineering, and mathematics (STEM) fields. Purpose: This project aimed to qualitatively investigate previously determined quantitative attributes of CT to gain a deeper understanding of how these attributes manifest themselves in undergraduate STEM scholars’ problem-solving and decision-making. Sample: Twelve program undergraduate student participants from a STEM professional development program partook in completing materials for this study. Methods: We used a phenomenology approach to explore the nuances of CT attributes from the responses of our program participants. We explored how the eight CT attributes (induction, analysis, inference, evaluation, deduction, interpretation, explanation, numeracy) emerged from participant responses, in isolation and in interaction with each other in undergraduate STEM students’ responses to real-world scenarios to find potential trends or insights to better understand the intricate nature of critical thinking as a construct. Results: While we aimed to explore CT attributes in isolation based on their previously defined definitions, our findings demonstrate that certain CT attributes occurred concurrently with other CT attributes at higher frequencies than others (e.g., analysis and induction). These concurrent attributes show that undergraduate students identified various entry points to a real-life scenario, and simultaneously find multiple solutions to these complex problems. The findings of this exploratory study suggest areas for STEM program improvement based on the qualitative examination of whether CT attributes are present, and how they might also happen concurrently more frequently when undergraduate students face real-life decision-making scenarios. Conclusions: Findings from this study will help create a more robust program model for undergraduate student development to meet STEM workforce demands and competitive job placement after graduation. A deep understanding of what makes up this complex construct is essential to increase students’ CT skills. Further research in this area may explore how CT attributes offer additional insights for framing undergraduate professional development programs. With careful attention to distinct and concurrent attributes, carefully designed professional development might be more effective and transferrable to STEM fields. 
    more » « less
  4. ASEE (Ed.)
    The purpose of this study was to measure the neurocognitive effects of think aloud when engineering students were designing. Thinking aloud is a commonly applied protocol in engineering design education research. The process involves students verbalizing what they are thinking as they perform a task. Students are asked to say what comes into their mind. This often includes what they are looking at, thinking, doing, and feeling. It provides insight into the student’s mental state and their cognitive processes when developing design ideas. Think aloud provides a richer understanding about how, what and why students’ design compared to solely evaluating their final product or performance. The results show that Ericsson and Simon's claim that there is no interference due to think-aloud is not supported by this study and more research is required to untangle the effect of think-aloud. 
    more » « less
  5. When conducting a science investigation in biology, chemistry, physics or earth science, students often need to obtain, organize, clean, and analyze the data in order to draw conclusions about a particular phenomenon. It can be difficult to develop lesson plans that provide detailed or explicit instructions about what students need to think about and do to develop a firm conceptual understanding, particularly regarding data analysis. This article demonstrates how computational thinking principles and data practices can be merged to develop more effective science investigation lesson plans. The data practices of creating, collecting, manipulating, visualizing, and analyzing data are merged with the computational thinking practices of decomposition, pattern recognition, abstraction, algorithmic thinking, and automation to create questions for teachers and students that help them think through the underlying processes that happen with data during high school science investigations. The questions can either be used to elaborate lesson plans or embedded into lesson plans for students to consider how they are using computational thinking during their data practices in science. 
    more » « less